https://www.youtube.com/watch?v=3CC4N4z3GJc

		700
	YouTube	

Gradient Boost Part 1...

...Regression Main Ideas!!!

StatQu Ø 919K	Join Subscribe	△ 9.9K	7	A Share	
that complicated! This vio	Machine Learning he most popular Machine Le deo is the first part in a series n ideas behind using Gradien	that walks through	gh it one st	tep at a time. T	his
Gradient Boost Part 2 $r_{co} = -\left[\frac{\delta k(r_{p}P(\chi))}{\delta^{2}(\chi)}\right]_{r(p)=r_{m,d},0} $ for $i=1,n$	Gradient Boost Part 2 (of 4) StatQuest with Josh Starmer 222K views • 4 years ago		iils		:
Regression De 26:46	Mix - StatQuest with Josh S	Stormor			
Gradient Boost Part 1	More from this channel for you	Addition .			
Regression (5)ain Ideas!!!					

GBM for repression

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

original data

88 76

NOTE: When Gradient Boost is used to Predict a continuous value, like Weight, we say that we are using **Gradient Boost** for Regression.

Using Gradient Boost for Regression is different from doing Linear Regression, so while the two methods are related, don't get them confused with each other.

for continues model, it's gradient bost for repression

Input: Data $\{(x_i, y_i)\}_{i=1}^n$, and a differentiable **Loss Function** $L(y_i, F(x))$

Step 1: Initialize model with a constant value: $F_0(x) = \operatorname{argmin} \sum_{i=1}^{n} L(y_i, \gamma)$

(A) Compute
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$
 for

(A) Compute $r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$ for $F(x_i) = -\frac{1}{2}$ for $F(x_i) = -\frac{1}{2}$ for into the math behind the **Gradient Boost** algorithm for **Regression**,

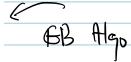
(B) Fit a regression tree to the rim values and a walking through it step-by-step and regions R_{jm} , for $j = 1...J_m$

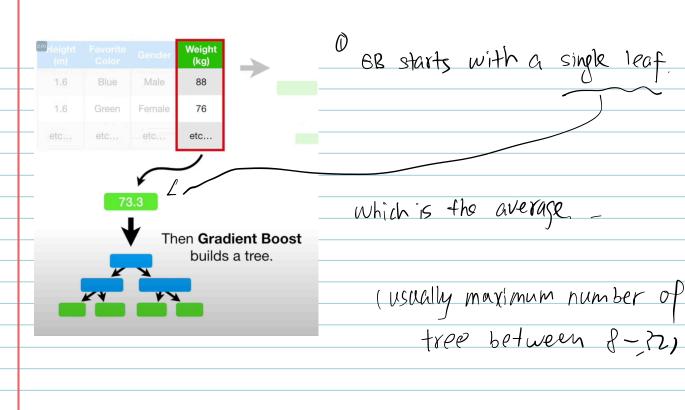
proving that what we cover to day is

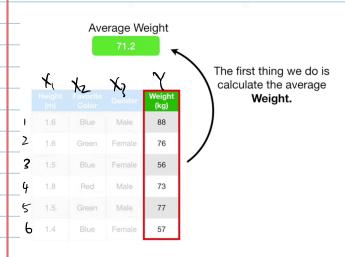
(C) For
$$j=1...J_m$$
 compute $\gamma_{jm}=\operatorname*{argmin}_{\gamma}\sum_{x_i\in R_{ij}}L(y_i,F_{m-1}(x_i)+\gamma)$
(D) Update $F_m(x)=F_{m-1}(x)+\nu\sum_{j=1}^{J_m}\gamma_mI(x\in R_{jm})$

(D) Update
$$F_m(x) = F_{m-1}(x) + \nu \sum_{i=1}^{J_m} \gamma_m I(x \in R_{jm})$$

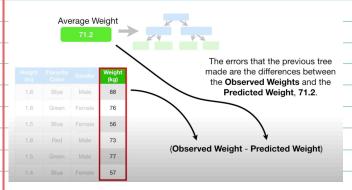
Step 3: Output $F_M(x)$







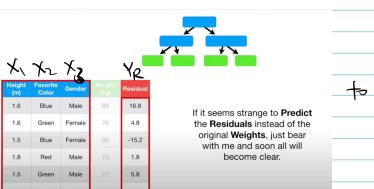
1. Calculate the Aug. V=71.2



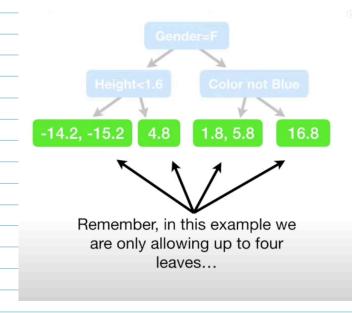
I we calculate the errors.

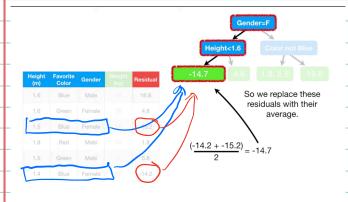
took mean as $\sqrt{1 - 1}$ then error is $\sqrt{1 - 1}$ **Height Favorite** Gender Residual Color (m) 16.8 1.6 Blue Male Female 4.8 1.6 Green -15.2 1.5 Blue Female 1.8 Red Male 1.8 1.5 Green Male 5.8 1.4 Blue Female -14.2

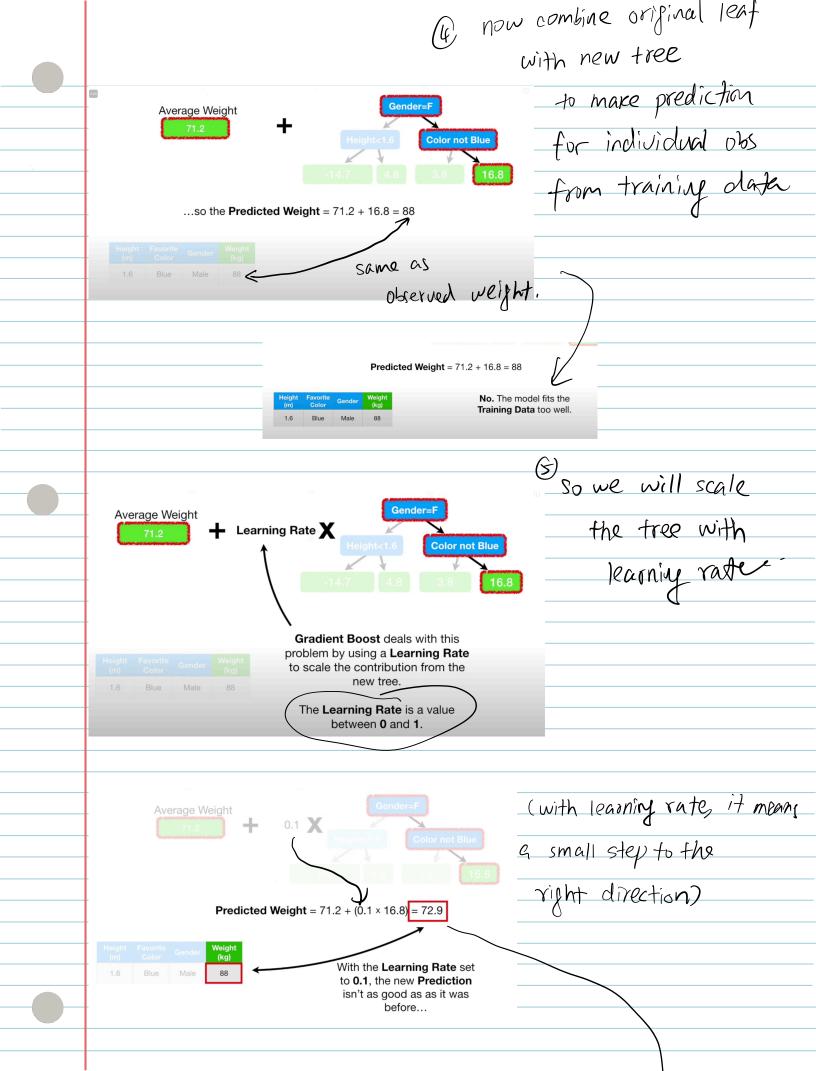
errors are the psedual residuals.

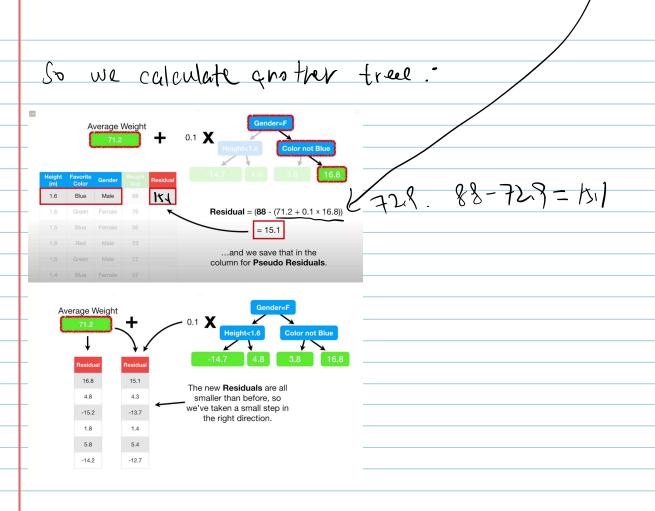


3. then we built a new tree with X1, X2, X3
to predict the Ye.
(distance)
then we get a tree

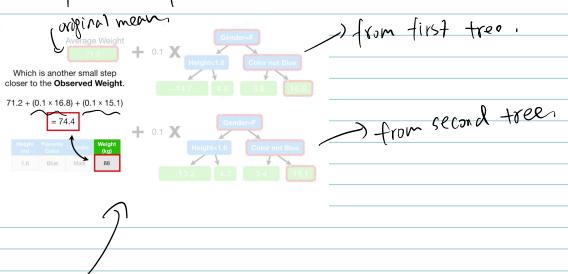


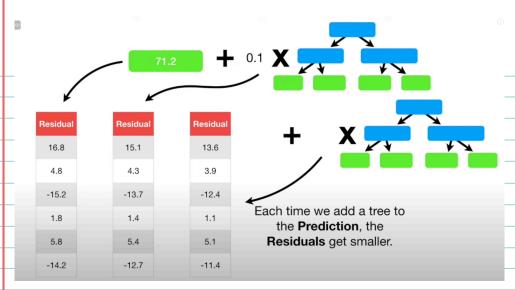


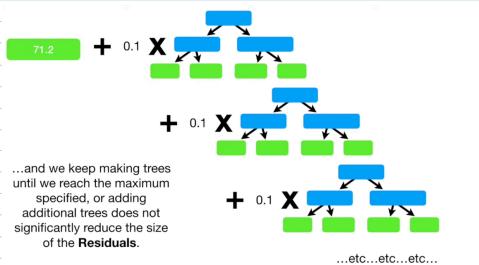


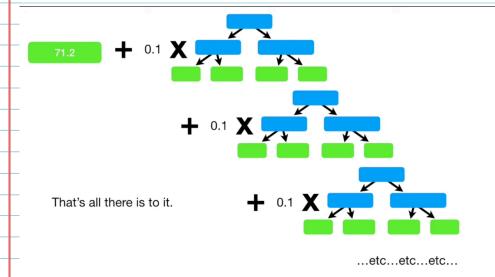


another small step.

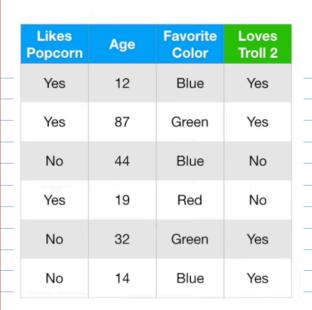


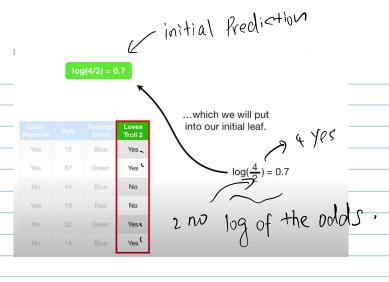






GB for classification.





Probability of Loving Troll 2 = 0.7

Res | Age | Favoritic | Loves | Color | Troll 2 |

Res | 12 | Blue | Yes | Res | 87 | Green | Yes | Res |

way of furning it to

Since majority agree (att is yes

so initial is yes

Residual = (Observed - Predicted)

