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Preface

Why We Wrote This Book
We want to show data scientists why being more aware, informed, and deliberate
about their tools is an optimal strategy for increased productivity. With this goal in
mind, we didn’t write a bilingual dictionary (well, not only—you’ll find that handy
resource in the Appendix). Ongoing discussions about Python versus R (the so-called
“language wars”) have long since ceased to be productive. It recalls, for us, Maslow’s
hammer: “if all you have is a hammer, everything looks like a nail.” It’s a fantasy
worldview set in absolutes, where one tool offers an all-encompassing solution. Real-
world situations are context-dependent, and a craftsperson knows that tools should
be chosen appropriately. We aim to showcase a new way of working by taking advan‐
tage of all the great data science tools available, regardless of the language they are
written in. Thus we aim to develop both how the modern data scientist thinks and
works.

We chose the word modern in the title not just to signify novelty in our approach. It
allows us to take a more nuanced stance in how we discuss our tools. What do we
mean by modern data science? Modern data science is:

Collective
It does not exist in isolation. It’s integrated into wider networks, such as a team or
organization. We avoid jargon when it creates barriers and embrace it when it
builds bridges (see “Technical Interactions” on page x).

Simple
We aim to reduce unnecessary complexity in our methods, code, and
communications.

Accessible
It’s an open design process that can be evaluated, understood, and optimized.

ix
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Generalizable
Its fundamental tools and concepts are applicable to many domains.

Outward looking
It incorporates, is informed by, and is influenced by developments in other fields.

Ethical and honest
It’s people-oriented. It takes best practices for ethical work, as well as a broader
view of its consequences, for communities and society, into account. We avoid
hype, fads, and trends that only serve short-term gains.

However the actual job description of a data scientist evolves in the coming years, we
can expect that these timeless principles will provide a strong foundation.

Technical Interactions
Accepting that the world is more extensive, more diverse, and more complex than
any single tool can serve presents a challenge that is best addressed directly and early.

This broadened perspective results in an increase in technical interactions. We must
consider the programming language, packages, naming conventions, project file
architecture, integrated development environments (IDEs), text editors, and on and
on that will best suit the situation. Diversity gives rise to complexity and confusion.

The more diverse our ecosystem becomes, the more important it is to consider
whether our choices act as bridges or barriers. We must always strive to make choices
that build bridges with our colleagues and communities and avoid those that build
barriers that isolate us and make us inflexible. There is plenty of room to contain all
the diversity of choices we’ll encounter. The challenge in each situation is to make
choices that balance personal preference and communal accessibility.

This challenge is found in all technical interactions. Aside from tool choice (a “hard”
skill), it also includes communication (a “soft” skill). The content, style, and medium
of communication, to name just a few considerations, also act as bridges or barriers
to a specific audience.

Becoming bilingual in both Python and R is a step toward building bridges among
members of the wider data science community.

Who This Book Is For
This book aims at data scientists at the intermediate stage of their careers. As such, it
doesn’t attempt to teach data science. Nonetheless, early-career data scientists will also
benefit from this book by learning what’s possible in a modern data science context
before committing to any topic, tool, or language.
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1 Etymology is the study of word origins and meanings.

Our goal is to bridge the gap between the Python and R communities. We want to
move away from a tribal, “us versus them” mentality and toward a unified, productive
community. Thus, this book is for those data scientists who see the benefit of expand‐
ing their skill set and thereby their perspectives and the value that their work can add
to all variety of data science projects.

It’s negligent to ignore the powerful tools available to us. We strive to be open to new,
productive ways of achieving our programming goals and encourage our colleagues
to get out of their comfort zone.

In addition, Part II and the Appendix also serve as useful references for those
moments when you just need to quickly map something familiar in one language
onto the other.

Prerequisites
To obtain the best value from this book, we assume the reader is familiar with at least
one of the main programming languages in data science, Python and R. A reader with
knowledge of a closely related one, such as Julia or Ruby, can also derive good value.

Basic familiarity with general areas of data science work, such as data munging, data
visualization, and machine learning is beneficial, but not necessary, to appreciate the
examples, workflow scenarios, and case study.

How This Book Is Organized
We’ve organized this book as if we’re learning a second spoken language as an adult.

In Part I we begin by going back in time to the origins of the two languages and show
how this has influenced the current state by covering key breakthroughs. In our anal‐
ogy with spoken languages, this helps provide a bit of context as to why we have
quirks such as irregular verbs and plural endings. Etymology is interesting and helps
you gain an appreciation of a language, like the seemingly endless forms of plural
nouns in German, but it’s certainly not essential for speaking.1 If you want to get right
into the languages, skip straight to Part II.

Part II provides a deeper dive into the dialects of both languages by offering a mir‐
rored perspective. First we will cover how a Python user should approach work with
R, and then the other way around. This will expand not only your skill set but also
your way of thinking as you appreciate how each language operates.
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In this part, we’ll treat each language separately as we start to become bilingual. Just
like becoming bilingual in a spoken language, we need to resist two defeating urges.
The first urge is to point out how much more straightforward, or more elegant, or in
some way “better,” something is in our mother tongue. Congratulations to you, but
that’s not the point of learning a new language, is it? We’re going to learn each lan‐
guage in its own right. Although we’ll point out comparisons as we go along, they’ll
help us deal with our native-language baggage.

The second urge is to constantly try to interpret literally and word for word between
two languages. This prevents us from thinking (or even dreaming) in the new lan‐
guage, and sometimes it’s just not possible! Examples I like to use are phrasing such
as das schmeckt mir in German, or ho fame in Italian, which translate literally very
poorly as “that tastes to me” (That tastes good) and “I have hunger” (I’m hungry). The
point is, different languages allow for different constructs. This gives us new tools to
work with and new ways to think, once we realize that we can’t map everything 1:1
onto our previous knowledge. Think of these chapters as our first step to mapping
your knowledge of one language onto the other.

Part III covers the modern context of language applications. This includes a review of
the broad ecosystem of open source packages as well as the variety of workflow-
specific methods. This part will demonstrate when one language is preferred and why,
although they’ll still be separate languages at this point. This will help you to decide
which language to use for parts of a large data science project.

In spoken languages, lost in translation is a real thing. Some things just work better in
one language. In German, mir ist heiß and ich bin heiß are both “I’m hot” in English,
but a German speaker will distinguish hotness from the weather versus physique.
Other words like Schadenfreude, a compound word from “schaden” (damage) and
“freude” (pleasure) meaning to take pleasure in someone’s difficulties, or Kummer‐
speck, a compound word from “kummer” (grief) and “speck” (bacon) referring to the
weight gained due to emotional eating, are just so perfect there’s no use in translating
them.

Part IV details the modern interfaces that exist between the languages. First, we
became bilingual, using each language in isolation. Then, we identified how to choose
one language over another. Now, we’ll explore tools that take us from separate and
interconnected Python and R scripts to single scripts that weave the two languages
together in a single workflow.

The real fun starts when you’re not just bilingual, but working within a bilingual
community. Not only can you communicate in each language independently, but you
can also combine them in novel ways that only other bilingual speakers will appreci‐
ate and understand. Bilingualism doesn’t just provide access to a new community but
also creates in itself a new community. For purists, this is pure torture, but I hope
we’ve moved beyond that. Bilinguals can appreciate the warning “The Ordnungsamt is
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monitoring Bergmannkiez today.” Ideally you’re not substituting words because you’ve
forgotten them, but because it’s the best choice for the situation. There’s no great
translation of Orgnungsamt (regulatory agency?) and Bergmannkiez is a neighbor‐
hood in Berlin that shouldn’t be translated anyways. Sometimes words in one lan‐
guage more easily convey a message, like Mundschutzpflicht, the obligatory wearing
of face masks during the coronavirus pandemic.

Finally, Chapter 7 consists of a case study that will outline how a modern data science
project can be implemented based on the material covered in this book. Here, we’ll
see all the previous sections come together in one workflow.

Let’s Talk
The field of data science is continuously evolving, and we hope that this book will
help you navigate easily between Python and R. We’re excited to hear what you think,
so let us know how your work has changed! You can contact us via the companion
website for the book. There you’ll find updated extra content and a handy Python/R
bilingual cheat sheet.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.
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This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/moderndatadesign/PyR4MDS.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Python and R for the
Modern Data Scientist by Rick J. Scavetta and Boyan Angelov (O’Reilly). Copyright
2021 Boyan Angelov and Rick J. Scavetta, 978-1-492-09340-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.
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Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/python-and-r-data-science.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

Discovery of a New Language

To get things started, we’ll review the history of both Python and R. By comparing
and contrasting these origin stories, you’ll better appreciate the current state of each
language in the data science landscape. If you want to get started with coding, feel
free skip ahead to Part II. 





1 Well, OK, more like For Statisticians, By Statisticians, but FSBS doesn’t have the same ring to it.

CHAPTER 1

In the Beginning

Rick J. Scavetta

We would like to begin with a great first sentence, like “It was the best of times, it was
the worst of times…” but honestly, it’s just the best of times—data science is flourish‐
ing! As it continues to mature, it has begun to splinter into niche topics, as many dis‐
ciplines do over time. This maturity is the result of a long journey that began in the
early days of scientific computing. It’s our belief that knowing some of Python’s and
R’s origin stories will help you to appreciate how they differ in today’s environment
and, thus, how to get the most out of them.

We’re not going to pretend to be science historians, that niche group of academics
who trace the circumstances of great discoveries and personalities. What we can do is
offer a highlight reel of where Python and R come from and how that led us to our
current situation.

The Origins of R
Whenever I think about R, I’m reminded of FUBU, a streetwear company founded
back in the 1990s. The name is an acronym that I immediately fell in love with: For
Us, By Us. FUBU meant community; it meant understanding the needs and desires of
your people and making sure you served them well. R is FUBU.1 By the end of this
chapter, I’m sure you’ll feel the same way. Once we acknowledge that R is FUBU, it
starts to make a lot more sense.

We can trace the origins of R right back to the now legendary Bell Laboratories in
New Jersey. In 1976, development of the statistical programming language S was
being spearheaded by John Chambers. A year later, Chambers published

3
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2 With the possible exception of Computational Methods for Data Analysis, which I admit to not having read.

Computational Methods for Data Analysis (John Wiley & Sons) and his colleague John
Tukey, also at Bell Laboratories, published Exploratory Data Analysis (Addison-
Wesley). In 1983, Chambers et al. published Graphical Methods for Data Analysis
(CRC Press). These books provided the framework to develop a computational sys‐
tem that would allow a statistician to not only explore, understand, and analyze their
data, but also to communicate their results. We’re talking about an all-star FUBU
lineup here! Coauthors of Chambers included both Tukey’s cousin Paul A. Tukey and 
William Cleveland. Cleveland’s empirical experiments on perception, summarized in
two insightful books, continue to inform the broader field of data visualization to this
day. Among their many contributions to scientific computing and statistics, Tukey
developed novel visualizations, like the oft misunderstood box and whiskers plot, and
Cleveland developed the LOESS (Locally Weighted Scatterplot Smoothing) method
for nonparametric smoothing.

We begin with S because it laid the foundations for what would eventually become R.
The nuggets of information in the previous paragraph tell us quite a bit about S’s—
and R’s—foundations. First, statisticians are very literal people (S, get it?). This is a
pretty helpful trait. Second, statisticians wanted a FUBU programming language spe‐
cializing in data analysis. They weren’t interested in making a generalist program‐
ming language or an operating system. Third, these early books on computational
statistics and visualization are, simply put, stunning examples of pedagogical beauty
and precise exposition.2 They have aged surprisingly well, despite the obviously dated
technology. I’d argue that these books planted the seed for how statisticians, and the R
community in particular, approached technical communication in an open, clear, and
inclusive manner. This, I believe, is an outstanding and distinctive hallmark of the R
community that has deep roots. Fourth, the early emphasis on graphical methods tells
us that S was already concerned with flexible and efficient data visualizations, neces‐
sary for both understanding data and communicating results. So S was about getting
the most important things done as easily as possible, and in a true FUBU way.

The original distribution of S ran on Unix and was available for free. Eventually, S
became licensed under an implementation titled S-PLUS. This prompted another
open source and free implementation of S by Ross Ihaka and Robert Gentleman at
the University of Auckland in 1991. They called this implementation R, for the initials
of their first names, as a play on the name S, and in keeping with the tradition of
naming programming languages using a single letter. The first official stable beta
release of R v1.0.0 was available on February 29, 2000. In the intervening years, two
important developments occurred. First, CRAN, the Comprehensive R Archive Net‐
work, was established to host and archive R packages on mirrored servers. Second,
the R Core Team was also established. This group of volunteers (which currently
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consists of 20 members) implements base R, including documentation, builds, tests,
and releases, plus the infrastructure that makes it all possible. Notably, some of the
original members are still involved, including John Chambers, Ross Ihaka, and Rob‐
ert Gentleman.

A lot has happened since R v1.0.0 in 2000, but the story so far should already give you
an idea of R’s unique background as a FUBU statistical computing tool. Before we
continue with R’s story, let’s take a look at Python.

The Origins of Python
In 1991, as Ross Ihaka and Robert Gentleman began working on what would become
R, Guido van Rossum, a Dutch programmer, released Python. Python’s core vision is
really that of one person who set out to address common computing problems at the
time. Indeed, van Rossum was lovingly referred to as the benevolent dictator for life
(BDFL) for years, a title he gave up when he stepped down from Python’s Steering
Council in 2018.

We saw how S arose out of the need for statisticians to perform data analysis and how
R arose from the need for an open source implementation, so what problem was
addressed by Python? Well, it wasn’t data analysis—that came much later. When
Python came on the scene, C and C++, two low-level programming languages, were
popular. Python slowly emerged as an interpreted, high-level alternative, in particular 
after Python v2 was released in 2000 (the same year R v1.0.0 was released). Python
was written with the explicit purpose to be, first and foremost, an easy to use and
learn, widely adopted programming language with simple syntax. And it has succee‐
ded in this role very well!

This is why you’ll notice that, in contrast to R, Python is everywhere and is incredibly
versatile. You’ll see it in web development, gaming, system administration, desktop
applications, data science, and so on. To be sure, R is capable of much more than data
analysis, but remember, R is FUBU. If R is FUBU, Python is a Swiss Army knife. It’s
everywhere and everyone has one, but even though it has many tools, most people
just use a single tool on a regular basis. Although data scientists using Python work in
a large and varied landscape, they tend to find their niche and specialize in the pack‐
ages and workflows required for their work instead of exploiting all facets of this gen‐
eralist language.

Python’s widespread popularity within data science is not entirely due to its data sci‐
ence capabilities. I would posit that Python entered data science by partly riding on
the back of existing uses as a general-purpose language. After all, getting your foot in
the door is halfway inside. Analysts and data scientists would have had an easier time
sharing and implementing scripts with colleagues involved in system administration
and web development because they already knew how to work with Python scripts.
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This played an important role in Python’s widespread adoption. Python was well
suited to take advantage of high-performance computing and efficiently implement
deep learning algorithms. R was, and perhaps still is, a niche and somewhat foreign
language that the wider computing world didn’t really get.

Although Python v2 was released in 2000, a widely adopted package for handling
array data didn’t take root until 2005, with the release of NumPy. At this time, SciPy, a
package that has, since 2001, provided fundamental algorithms for data science
(think optimization, integration, differential equations, etc.), began relying on
NumPy data structures. SciPy also provides specialized data structures such as k-
dimensional trees.

Once the issue of a standard package for core data structures and algorithms was set‐
tled, Python began its ascent into widespread use in scientific computing. The low-
level NumPy and SciPy packages laid the foundation for high-level packages like
pandas in 2009, providing tools for data manipulation and data structures like data
frames. This is sometimes termed the PyData stack, and it’s when the ball really got 
rolling.

The Language War Begins
The early 2000s set the stage for what some would later refer to as the language wars.
As the PyData stack started to take shape, milestones in both Python and R began to
heat things up. Four stand out in particular.

First, in 2002, BioConductor was established as a new R package repository and
framework for handling the burgeoning (read absolute explosion of) biological data
in its myriad forms. Until this point, bioinformaticians relied on tools like MATLAB
and Perl (along with classic command-line tools and some manual web-interface
tools). MATLAB is still favored in specific disciplines, like neuroscience. However,
Perl has been mostly superseded by BioConductor. BioConductor’s impact on bioin‐
formatics is hard to overstate. Not only did it provide a repository of packages for
dealing with remote genetic sequence databases, expression data, microarrays, and so
on, it also provided new data structures to handle genetic sequences. BioConductor
continues to expand and is deeply embedded within the bioinformatics community.

Second, in 2006 the IPython package was released. This was a groundbreaking way to
work on Python in an interactive notebook environment. Following various grants
beginning in 2012, IPython eventually matured into the Jupyter Project in 2014,
which now encompasses the JupyterLab IDE. Users often forget that Jupyter is short
for “Julia, Python, and R” because it’s very Python-centric. Notebooks have become a
dominant way of doing data science in Python, and in 2018 Google released Google
Colab, a free online notebook tool. We’ll dig into this in Chapter 3.
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3 I would argue that we can trace this relationship back to the early days of R, as evidenced by formula notation
and various built-in datasets. Nonetheless, a consistent and intuitive framework was lacking.

4 This has even moved some prominent developers to voice an aversion to the eventual development of Python
4.0. How Python develops will be exciting to watch!

Third, in 2007, Hadley Wickham published his PhD thesis, which consisted of two R
packages that would fundamentally change the R landscape. The first, reshape, laid
the foundations for what would later become formalized as the Tidyverse (more on
this later). Although reshape has long since been retired, it was the first glimpse into
understanding how data structure influences how we think about and work with our
data.3 The second, ggplot2, is an implementation of the seminal book by Leland Wil‐
kinson et al., The Grammar of Graphics (Springer), and provided intuitive, high-level
plotting that greatly simplified previously existing tools in R (more on this in
Chapter 5).

Finally, Python v3 was released in 2008. For years the question persisted as to which
version of Python to use, v2 or v3. That’s because Python v3 is backward-
incompatible.4 Luckily, this has been resolved for you since Python v2 was retired in
2020. Surprisingly, you can still buy a new MacBook Pro after that date with Python 2
preinstalled because legacy scripts still rely on it. So Python 2 lives on still.

The Battle for Data Science Dominance
By this point both Python and R had capable tools for a wide variety of data science
applications. As the so-called “language wars” continued, other key developments saw
each language find its niche.

Both Python and R were wrapped up in specific builds. For Python this was the Ana‐
conda distribution, which is still in popular use (see Chapter 3). For R, Revolution
Analytics, a data science software developer, produced Revolution R Open. Although
their R build was never widely adopted by the community, the company was acquired
by Microsoft, signaling strong corporate support of the R language.

In 2011, the Python community foresaw the boom in machine learning with the
release of the scikit-learn package. In 2016, this was followed by the release of both
TensorFlow and Keras for deep learning, also with a healthy dose of corporate sup‐
port. This also highlights Python’s strength as a high-level interpreter sitting on top of
high-performance platforms. For example, you’ll find Amazon Web Services (AWS)
Lambda for massive highly concurrent programming, Numba for high-performance
computing, and the aforementioned TensorFlow for highly optimized C++. With its
widespread adoption outside of data science, it’s no surprise that Python gained a rep‐
utation for deploying models in a way that R could not.
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5 That is, using an output of one function as the input of another function.
6 Python users might not be familiar with the term base. This means only the built-in functionality of the lan‐

guage without any additional package installations. Base R itself is well equipped for data analysis. In Python,
a data scientist would import the PyData stack by default.

2011 also saw the release of RStudio IDE by the eponymous company, and over the
next few years the R community began to converge on this tool. At this point, to use
R is, in many regards, to use RStudio. The influence RStudio has on promoting R as a
programming language suitable for a wide variety of data-centric uses is also impor‐
tant to note.

While all of this was happening, a growing segment of the R community began to
move toward a suite of packages, many of which were authored or spearheaded by
Hadley Wickham, that began to reframe and simplify typical data workflows. Much
of what these packages did was to standardize R function syntax, as well as input and
output data storage structures. Eventually the suite of packages began to be referred
to colloquially as the “Hadleyverse.” In a keynote speech at the useR! 2016 conference
at Stanford University, Wickham did away with this, igniting digital flames to burn up
his name and coining the term “Tidyverse.” Since Wickham joined RStudio, the com‐
pany has been actively developing and promoting the Tidyverse ecosystem, which has
arguably become the dominant dialect in R. We’ll explore this in more depth in
Chapter 2.

We can imagine that R contains at least two “paradigms,” or “dialects.” They can be
mixed, but each has its own distinct flavor. Base R is what most R has been and, prob‐
ably, still is. Tidyverse reimagines base R in a broad, all-encompassing universe of
packages and functions that play well together, often relying on piping,5 and has a
preference for data frames.6 I would argue that BioConductor provides yet another
dialect, which is focused on a specific discipline, bioinformatics. You’ll no doubt find
that some large packages may contain enough idiosyncrasies that you may consider
them a dialect in their own right, but let’s not go down that rabbit hole. R is now at
the threshold where some users know (or are taught) only the Tidyverse way of doing
things. The distinction between base and Tidyverse R may seem trivial, but I have
seen many new R learners struggle to make sense of why the Tidyverse exists. This is
partly because years of base R code is still in active use and can’t be ignored. Although
Tidyverse advocates argue that these packages make life much easier for the beginner,
competing dialects can cause unnecessary confusion.

We can also imagine that Python contains distinct dialects. The vanilla installation of
Python is the bare-bones installation, and operates differently from an environment
that has imported the PyData stack. For the most part, data scientists operate within
the PyData stack, so there’s less confusion between dialects.
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A Convergence on Cooperation and Community-Building
For a time, it seemed that the prevailing attitude in the language wars was an us ver‐
sus them mentality. A look of disdain glancing at a person’s computer screen. It
seemed like either Python or R would eventually disappear from the data science
landscape. Hello monoculture! Some data scientists are still rooting for this, but we’re
guessing you’re not one of them. And there was also a time when it seemed like
Python and R were trying to mimic each other, just porting workflows so that lan‐
guage didn’t matter. Luckily those endeavors have not come to fruition. Both Python
and R have unique strengths; trying to imitate each other seems to miss that point.

Today many data scientists in the Python and R communities recognize that both lan‐
guages are outstanding, useful, and complementary. To return to a key point in the
preface, the data science community has converged onto a point of cooperation and
community-building—to the benefit of everyone involved.

We’re ready for a new community of bilingual data scientists. The challenge is that
many users of one language don’t quite know how they are complementary or when
to use which language. There have been a few solutions over the years, but we’ll get
into that in Part IV.

Final Thoughts
At this point you should have a good idea of where we are in 2021 and how we got
here. In the next part we’ll introduce each group of users to a new language.

One last note: Python users refer to themselves as Pythonistias, which is a really cool
name! There’s no real equivalent in R, and they also don’t get a really cool animal, but
that’s life when you’re a single-letter language. R users are typically called…wait for
it…useRs! (Exclamation optional.) Indeed, the official annual conference is called
useR! (exclamation obligatory), and the publisher Springer has an ongoing and very
excellent series of books of the same name. We’ll use these names from now own.

Figure 1-1 provides a summary of some of the major events that we’ve highlighted in
this chapter, plus some other milestones of interest.
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Figure 1-1. A timeline of Python and R data science milestones
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PART II

Bilingualism I: Learning a
New Language

In this part, I’ll introduce the two core languages for data science: Python and R. In
contrast to other introductions, I expect some familiarity in one language before
introducing the other. In short, I expect that you’re carrying baggage. I’d like to advise
you to leave your baggage at the door, but baggage is designed to be hauled around,
so that’s kind of hard to do. Instead, let’s embrace your baggage! Recognize that
Python and R operate quite differently and you may not always find a 1:1 translation.
That’s OK!

When I teach R and Python for complete beginners, each lesson is an element, a fun‐
damental component of the whole. The first four elements are:

Functions
How to perform actions, i.e., the verbs.

Objects
How to store information, i.e., the nouns.

Logical Expressions
How to ask questions.

Indexing
How to find information.



There are many layers beyond these four elements, but these are the core, essential
ones. Once you have a good grasp of these elements, you have the tools to delve fur‐
ther on your own. My goal is to get you to that point. Thus, the following chapters are
not thorough introductions to each language.

The Appendix contains a quick-reference Python:R bilingual dictionary. It will help
you translate code you’re familiar with into your new, still unfamiliar language.

Chapter 2
Begin here if you’re a Pythonista who wants to get into the uerR’s mindset.

Chapter 3
Begin here if you’re a useR who wants to get into the Pythonista’s mindset.

Once you’re familiar with your new language, continue on to Part III to learn when
each is most appropriate.



1 useR! is the annual R conference and also a series of books by publisher Springer.

CHAPTER 2

R for Pythonistas

Rick J. Scavetta

Welcome, brave Pythonista, to the world of the useR!1 In this chapter I introduce you
to R’s core features and try to address some of the confusing bits that you’ll encounter
along the way. Thus, it’s useful to mention what we’re not going to do.

First, we’re not writing for the naïve data scientist. If you want to learn R from
scratch, there are many wonderful resources available—too many to name. We
encourage you to explore them and choose those that suit your needs and learning
style. Here, we’ll bring up topics and concerns that may confuse the complete novice.
We’ll take some detours to explain topics that we hope will specifically help the
friendly Pythonista to adapt to R more easily.

Second, this is not a bilingual dictionary; you’ll find that in the Appendix, but
without context it’s not really useful. Here, we want to take you through a journey of
exploRation and undeRstanding. We want you to get a feel for R so that you begin to
think R, becoming bilingual. Thus, for the sake of narrative, we may introduce some
items much later than when writing for a complete novice. Nonetheless, we hope that
you’ll return back to this chapter when you need to remind yourself of how to do
familiar tasks in a new language.

Third, this is not a comprehensive guide. Once you crack the R coconut, you’ll get
plenty of enjoyment exploring the language more deeply to address your specific
needs as they arise. As we mentioned in the first part of the book, the R community is
diverse, friendly, welcoming—and helpful! We’re convinced it’s one of the less “tech-
bro” cultures out there. To get an idea of the community, you can follow #rstats on
Twitter.
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Up and Running with R
To follow the exercises in this chapter, you can either access R online using RStudio
Cloud or install R and RStudio locally. RStudio Cloud is a platform providing access
to an R instance (via an RStudio IDE) that allows you to upload your own data and
share projects. We’ll cover both methods in the following paragraphs.

To use RStudio Cloud, make an account and then navigate to our publically available
project. Make sure to save a copy of the project in your workspace so you have your
own copy; you’ll see the link in the header.

Your RStudio session should look like Figure 2-1. Open ch02-r4py/r4py.R and that’s it!
You’re ready to follow along with all the examples. To execute commands, press Ctrl
+ Enter (or Command-Enter).

Figure 2-1. Our project in RStudio Cloud

To run R locally, you’ll find it’s available with the Anaconda distribution, if you use
that; otherwise you can install it directly. First, download and install R for your oper‐
ating system. R v4.0 was released in June 2020 and, in contrast to Python v3.x, is
backward compatible, with a few notable exceptions. We’ll assume you’re running at
least R 4.0.0: “Taking Off Again.” Each release gets a name inspired by Peanuts (the
classic comic strip and film franchise featuring Charlie Brown, Snoopy, and co.),
which is a nice personal touch, I think. Next, install the RStudio Desktop IDE.

Finally, set up a project to work on. This is a bit different from a virtual environment,
which we’ll discuss later on. There are two typical ways to make a project with preex‐
isting files.
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First, if you’re using Git, you’ll be happy to know that RStudio is also a basic Git GUI
client. In RStudio, select File > “New project” > Version Control > Git and enter the
repository URL https://github.com/moderndatadesign/PyR4MDS. The project direc‐
tory name will use the repo name automatically. Choose where you want to store the
repo and click Create Project.

Second, if you’re not using Git, you can just download and unzip the repo from
https://github.com/moderndatadesign/PyR4MDS. In RStudio, select File > Existing
Directory and navigate to the downloaded directory. A new R project file, *.Rproj will
be created in that directory.

Your RStudio session should look like Figure 2-2. Open ch02-r4py/r4py.R and that’s it!
You’re ready to follow along with all the examples. To execute commands, press Ctrl
+ Enter (or Command-Enter).

Figure 2-2. Our project in RStudio

Projects and Packages
We could begin exploring R by using a built-in dataset and diving right into the Tidy‐
verse (introduced in Chapter 1), but I want to step back for a second, take a deep
breath, and begin our story at the beginning. Let’s begin by reading in a simple CSV
file. For this, we’re going to use a dataset that is actually already available in R in the
ggplot2 package. For our purposes, we’re less bothered with the actual analysis than
how it’s being done in R. I’ve provided the dataset as a file in the book repository.

If you set up your project correctly, all you’ll need to execute is the following com‐
mand. If this command doesn’t work, don’t worry, we’ll return to it shortly.

diamonds <- read.csv("ch02-r4py/data/diamonds.csv")
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Just like in Python, single ('') and double ("") quotation marks are interchangeable,
although there is a preference for double quotation marks.

You should now have the file imported and available as an object in your global envi‐
ronment, where your user-defined objects are found. The first thing you’ll notice is
that the environment pane of RStudio will display the object and already give some
summary information. This lovely, simple touch is similar to the Jupyter Notebook
extension for VS Code (see Chapter 3), which also lets you view your environment.
Although this is a standard feature in RStudio, viewing a list of objects when scripting
in Python, or many languages for that matter, is not typical. Clicking the little blue
arrow beside the object name will reveal a text description (see Figure 2-3).

Figure 2-3. A pulldown of a data frame

Clicking on the name will open it up in an Excel-like viewer (see Figure 2-4).
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Figure 2-4. A data frame in table view

The RStudio Viewer
The RStudio viewer is much nicer than Excel, since it only loads into memory what
you’re seeing on the screen. You can search for specific text and filter your data here,
so it’s a handy tool for getting a peek at your data.

Although these are nice features, some useRs consider them to be a bit too much GUI
and a bit too little IDE. Pythonistas would mostly agree, and some criticize the user
experience of RStudio because of this. I partly agree, since I’ve seen how it can
encourage bad practices. For example, to import your dataset, you could have also
clicked Import Dataset. This can be convenient if you’re having a really hard time
parsing through the file’s structure, but it leads to undocumented, nonreproducible
actions that are extremely frustrating since scripts/projects will not be self-contained.
The command to import the file will be executed in the console, and visible in the
history panel, but it will not appear in the script unless you explicitly copy it. This 
results in objects in the environment that are not defined in the script. However,
remember that RStudio is not R. You can use R with other text editors (for example
the ESS [Emacs Speaks Statistics] extension for Emacs).
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If you couldn’t import your data with the previous commands, either (i) the file
doesn’t exist in that directory or (ii) you’re working in the wrong working directory,
which is more likely. You may be tempted to write something terrible, like this:

diamonds <- read.csv("ch02-r4py/data/diamonds.csv")

You’ll be familiar with avoiding the use of hardcoded paths when using virtual envi‐
ronments with Python. Using relative paths, as we did earlier, ensures that our file
directory contains all necessary data files. Neither the working directory nor the
project are virtual environments, but they are nonetheless very handy, so let’s check
them out!

The working directory is the first place R looks for a file. When you use R projects,
the working directory is wherever you have the *.Rproj file. Thus, ch02-r4py is a sub‐
directory in our working directory. It doesn’t matter what the working directory is
called or where it is. You can move the entire project anywhere on your computer and
it will still just work once you open the project (the *.Rproj file) in RStudio.

If you’re not using R projects, then your working directory will
likely be your home directory, displayed as project: (None) in RStu‐
dio. This is terrible because you’ll have to specify the entire path to
your file instead of just the subdirectories within your project.
You’ll find the command getwd() to get, and setwd() to set the
working directory in many outdated tutorials. Please don’t use
these commands! They result in the same problems of hardcoding
full file paths.

Returning to our diamonds <- read.csv("ch02-r4py/data/diamonds.csv") com‐
mand, you’ll already notice some things that will confuse and/or aggravate the seas‐
oned Pythonista. Three things in particular stand out.

First, notice that it’s commonplace, and even preferred, to use <- as the assign opera‐
tor in R. You can use =, as in Python, and indeed you’ll see prominent and experi‐
enced useRs do this, but <- is more explicit as assign to object since = is also used to
assign values to arguments in function calls, and we all know how much Pythonistas
love being explicit!

The <- assign operator is actually a legacy operator stemming from
the prestandardized QWERTY keyboard where the <- didn’t mean
move the cursor one space to the left but literally, make <- appear.

Second, notice that the function name is read.csv(). Nope, that’s not a typo. csv() is
not a method of object read, nor is it a function of module read. Both are completely
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acceptable interpretations if this was a Python command. In R, with a few, but nota‐
ble, exceptions, “.” doesn’t mean anything special. It’s a bit annoying if you’re used to
more object-oriented programming (OOP) languages where “.” is a special character.

Finally, you’ll notice that we didn’t initialize any packages to accomplish this task. The
read.*() function variants are a part of base R. Interestingly, there are newer and
more convenient ways of reading in files if these functions don’t satisfy your needs.
For example, the read_csv() function is in the readr package. We know you’re exci‐
ted to see that “_”!

In general, when you see simple functions with “.,” these are old base R functions cre‐
ated when nobody worried that it would be confusing to have “.” in the names. Func‐
tions from the newer Tidyverse packages (e.g., readr) tend to use "_" (see Chapter 1).
They basically do the same thing, but with some slight tweaks to make them more
user friendly.

Let’s see this in action with readr. Just like in Python, you’ll need to install the pack‐
age. This is typically done directly in the R console; there is no pip equivalent in R.

Use the following command:

install.packages("tidyverse")

In RStudio, you can install packages by using the Packages panel in
the lower-right pane and clicking Install. Type in tidyverse and
make sure that the Install All Dependencies box is checked and
click OK. If you go this route, refrain from clicking on the check‐
boxes beside the names of the installed packages. This will initialize
the package, but not record it in your script.

This will by default install packages and their dependencies from CRAN, the reposi‐
tory of official R packages. Official packages have undergone quality control and are
hosted on mirrored servers around the world. The first time you do this, you’ll be
asked to choose a mirror site to install from. For the most part it doesn’t matter which
one you choose. You’ll see a lot of red text as the core Tidyverse packages and all their
dependencies are installed. This is mostly just a convenient way to get lots of useful
packages installed all at once.

The most common problem in installing packages is to not have write permission in
the packages directory. This will prompt you to create a personal library. You can
always check where your packages are installed by using

.libPaths()
[1] "/Library/Frameworks/R.framework/Versions/4.0/Resources/library"

If you have a personal library, it will be shown here in the second position.
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In contrast to Pythonistas, who tend to use virtual environments,
useRs typically install a package once, making it available system-
wide. After many false starts in trying to implement a solution for
project-specific libraries in R, the current favorite is the renv pack‐
age, i.e., R environment.

As in Python, after installing a package, it needs to be initialized in each new R ses‐
sion. When we say initialize, or load, a package, what we’re really saying is “use the
library() function to load an installed package and then attach it to the namespace,
i.e., the global environment.” All your packages comprise your library, hence
library(). The core suite of packages in the Tidyverse can be loaded using
library(tidyverse). That is commonplace and for the most part not a problem, but
you may want to get into the habit of loading only those packages that you actually
require instead of filling up your environment needlessly. Let’s start with readr, which
contains the read_csv() function.

# R
library(readr)

This is the equivalent of:

# Python equivalent
import readr

Although R uses OOP, it’s mostly operating in the background, hence you’ll never see
strange aliases for packages like:

import readr as rr

That’s just a foreign concept in R. After you have attached the package, all functions
and datasets in that package are available in your global environment.

This calls to mind another legacy function that you may see float‐
ing around. You must absolutely avoid attach() (and for the most
part its counterpart detach()). This function allows you to attach
an object to your global environment, much like how we attached a
package. Thus, you can call elements within the object directly,
without first specifying the object name explicitly, like how we call
functions within a package without having to explicitly call the
package name every time. The reason this has fallen out of favor is
that you’re likely to have many data objects that you want to access,
so conflicting names are likely to be an issue (i.e., leading to mask‐
ing of objects). Plus, it’s just not explicit.

Let’s address another issue with loading packages before continuing: you’ll often see:

require(readr)
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require() will load an installed package and also return a TRUE/FALSE based on suc‐
cess. This is useful for testing if a package exists, so it should be reserved for those
instances where that is necessary. For the most part, you want to use library().

Alright, let’s read in our dataset again, this time using read_csv() to make some sim‐
ple comparisons between the two methods.

> diamonds_2 <- read_csv("R4Py/diamonds.csv")
Parsed with column specification:
cols(
  carat = col_double(),
  cut = col_character(),
  color = col_character(),
  clarity = col_character(),
  depth = col_double(),
  table = col_double(),
  price = col_double(),
  x = col_double(),
  y = col_double(),
  z = col_double()
)

You’ll notice that we’re afforded a more detailed account of what’s happened.

As we mentioned earlier, Tidyverse design choices tend to be more user friendly than
older processes they update. This output tells us the column names of our tabular
data and their types (see Table 2-2).

Also note that the current trend in R is to use snake case, underscores (“_”) between
words and only lowercase letters. Although there has classically been poor adherence
to a style guide in R, Advanced R by Hadley Wickham (CRC Press) offers good sug‐
gestions. Google also attempted to promote an R style guide, but it doesn’t seem that
the community is very strict on this issue. This is in contrast to a strict adherence to
the PEP 8 Style Guide for Python Code, authored by Guido van Rossum and released
in the early days of Python.

The Triumph of Tibbles
So far, we’ve imported our data twice, using two different commands. This was done
so that you can see some of how R works under the hood and some typical behavior
of the Tidyverse versus the base package. We already mentioned that you can click on
the object in the Environment Viewer, the upper-right pane, to look at it, but it’s also
typical to just print it to the console. You may be tempted to execute:

> print(diamonds)
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But the print() function is not necessary except in specific cases, like within a for
loop. As with a Jupyter Notebook, you can just execute the object name; for example:

> diamonds

This will print the object to the console. We won’t reproduce it here, but if you do 
execute the > diamonds command, you’ll notice that this is not a nice output! Indeed,
one wonders why the default output allows so much to be printed to the console in
interactive mode. Now try with the data frame we read in using read_csv():

> diamonds_2
# A tibble: 53,940 x 10
   carat cut       color clarity depth table price     x     y     z
   <dbl> <chr>     <chr> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 0.23  Ideal     E     SI2      61.5    55   326  3.95  3.98  2.43
 2 0.21  Premium   E     SI1      59.8    61   326  3.89  3.84  2.31
 3 0.23  Good      E     VS1      56.9    65   327  4.05  4.07  2.31
 4 0.290 Premium   I     VS2      62.4    58   334  4.2   4.23  2.63
 5 0.31  Good      J     SI2      63.3    58   335  4.34  4.35  2.75
 6 0.24  Very Good J     VVS2     62.8    57   336  3.94  3.96  2.48
 7 0.24  Very Good I     VVS1     62.3    57   336  3.95  3.98  2.47
 8 0.26  Very Good H     SI1      61.9    55   337  4.07  4.11  2.53
 9 0.22  Fair      E     VS2      65.1    61   337  3.87  3.78  2.49
10 0.23  Very Good H     VS1      59.4    61   338  4     4.05  2.39
# … with 53,930 more rows

Wow! That’s a much nicer output than the default base R version. We have a neat little
table with the names of the columns on one row, and three-letter codes for the data
types under them that are set in angle brackets (<>). We only see the first 10 rows and
then a note telling us how much we’re not seeing. If there were too many columns for
our screen, we’d see them listed at the bottom. Give that a try; set your console output
to be very narrow and execute the command again:

# A tibble: 53,940 x 10
   carat cut     color clarity
   <dbl> <chr>   <chr> <chr>
 1 0.23  Ideal   E     SI2
 2 0.21  Premium E     SI1
 3 0.23  Good    E     VS1
 4 0.290 Premium I     VS2
 5 0.31  Good    J     SI2
 6 0.24  Very G… J     VVS2
 7 0.24  Very G… I     VVS1
 8 0.26  Very G… H     SI1
 9 0.22  Fair    E     VS2
10 0.23  Very G… H     VS1
# … with 53,930 more rows,
#   and 6 more variables:
#   depth <dbl>, table <dbl>,
#   price <dbl>, x <dbl>,
#   y <dbl>, z <dbl>
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Base R was already pretty good for exploratory data analysis (EDA), but this is next-
level convenience. So what happened? Actually understanding this is pretty impor‐
tant, but first we want to highlight two other interesting points.

First, notice that we didn’t need to load all of readr to gain access to the read_csv()
function. We could have left out library(readr) and just used:

> diamonds_2 <- readr::read_csv("R4Py/diamonds.csv")

The double-colon operator :: is used to access functions within a package, akin to:

from pandas import read_csv

You’ll see :: used when useRs know that they’ll only need one very specific function
from a package, or that functions in two packages may conflict with each other, so
they want to avoid attaching an entire package to their namespace.

Second, this is the first time we see actual data in R, and we can tell right away that
numbering begins with 1! (And why wouldn’t it?).

Printing Objects to the Screen
Just as an aside for printing objects to the screen, you’ll often see round brackets
around an entire expression. This just means to execute the expression and print the
object to the screen:

(aa <- 8)

It mostly just clutters up commands. Unless it’s necessary, just explicitly call the
object:

aa <- 8
aa

Plus, it’s easier to just comment out (use Ctrl + Shift + C in RStudio) the print line
instead of having to go back and remove all those extra brackets.

OK, let’s get to the heart of what’s happening. Why do diamonds and diamonds_2 look
so different when printed to the console? Answering this question will help us to
understand a bit about how R handles objects. To answer this question, let’s take a
look at the class of these objects:

class(diamonds)
[1] "data.frame"

class(diamonds_2)
[1] "spec_tbl_df" "tbl_df"      "tbl"         "data.frame"

You’ll be familiar with a data.frame from pd.DataFrame (OK, can we just admit that
a pd.DataFrame is just a Python implementation of an R data.frame?). But using the 
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Tidyverse read_csv() function produced an object with three additional classes. The
two to mention here are the subclass tbl_df and the class tbl; the two go hand in
hand for defining a tibble (hence tbl), which has a data frame structure tbl_df.

Tibbles are a core feature of the Tidyverse and have many perks over base R objects.
For example, printing to the console. Recall that calling an object name is just a short‐
cut for calling print(), which has a method to handle data frames. Now that we’ve
attached the readr package, it has a method to handle objects of class tbl_df.

So here we see OOP principles operating in the background implicitly handling
object classes and calling the methods appropriate to a given class. Convenient! Con‐
fusing? Implicit! I can see why Pythonistas get annoyed, but once you get over it, you
see that you can just get on with your work without too much hassle.

A Word About Types and Exploring
Let’s take a deeper look at our data and see how R stores and handles data. A data
frame is a two-dimensional heterogeneous data structure. It sounds simple, but let’s
break it down a bit further (see Table 2-1).

Table 2-1. Common data structures in R

Name Number of dimensions Type of data
Vector 1 Homogeneous

List 1 Heterogeneous

Data frame 2 Heterogeneous

Matrix 2 Homogeneous

Array n Homogeneous

Vectors are the most basic form of data storage. They are one-dimensional and
homogeneous. That is, one element after another, where every element is of the same
type. It’s like a one-dimensional NumPy array composed solely of scalars. We don’t
refer to scalars in R; that’s just a one-element-long vector. There are many types in R,
and four commonly used “user-defined atomic vector types.” The term atomic already
tells us that it doesn’t get any more basic than what we find in Table 2-2.

Table 2-2. The four most common user-defined atomic vector types in R

Type Data frame shorthand Tibble shorthand Description
Logical logi <lgl> Binary TRUE/FALSE, T/F, 1/0

Integer int <int> Whole numbers from [-Inf,Inf]

Double num <dbl> Real numbers from [-Inf,Inf]

Character chr <chr> All alpha-numeric characters, including white spaces
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The two other, less common, user-defined atomic vector types are raw and complex.

Vectors are fundamental building blocks. There are a few things to note about vec‐
tors, so let’s get that out of the way before we return to the workhorse of data science,
the beloved data frame.

The four user-defined atomic vector types listed in Table 2-2 are ordered according to
increasing levels of information content. When you create a vector, R will try to find
the lowest information-content type that can encompass all the information in that
vector. For example, logical:

> a <- c(TRUE, FALSE)
> typeof(a)
[1] "logical"

logical is R’s equivalent of bool, but it is very rarely referred to as boolean or binary. 
Also, note that T and F are not in themselves reserved terms in R, so they are not rec‐
ommended for logical vectors, although they are valid. Use TRUE and FALSE instead.
Let’s take a look at numbers:

> b <- c(1, 2)
> typeof(b)
[1] "double"

> c <- c(3.14, 6.8)
> typeof(c)
[1] "double"

R will automatically convert between double and integer as needed. Math is per‐
formed primarily using double-precision, which is reflected in the data frame short‐
hand for double being displayed as numeric. Unless you explicitly need to restrict a
number to be a true integer, then numeric/double will be fine. If you do want to
restrict values to be integer, you can coerce them to a specific type using one of the 
as.*() functions, or use the L suffix to specify that a number must be an integer.

> b <- as.integer(c(1, 2))
> typeof(b)
[1] "integer"

> b <- c(1L, 2L)
> typeof(b)
[1] "integer"

Characters are R’s version of strings. You’ll know this as str in Python, which is, con‐
fusingly, a common R function, str(), which gives the structure of an object. Charac‐
ters are also frequently referred to as strings in R, including in arguments and
package names, which is an unfortunate inconsistency:

> d <- c("a", "b")
> typeof(d)
[1] "character"

A Word About Types and Exploring | 25



Putting these together in a vanilla data frame using data.frame() or using the more
recently developed tibble using tibble() gives us:

my_tibble <- tibble(a = c(T, F),
                    b = c(1L, 2L),
                    c = c(3.14, 6.8),
                    d = c("a", "b"))
my_tibble

# A tibble: 2 x 4
  a         b     c d
  <lgl> <int> <dbl> <chr>
1 TRUE      1  3.14 a
2 FALSE     2  6.8  b

Notice we get the nice output from print() since it’s a tibble. When we look at the
structure, we’ll see some confusing features:

> str(my_tibble)
tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
 $ a: logi [1:2] TRUE FALSE
 $ b: int [1:2] 1 2
 $ c: num [1:2] 3.14 6.8
 $ d: chr [1:2] "a" "b"

str() is a classic base-package function and gives some bare-bones output. It’s simi‐
lar to what you’ll see when you click on the reveal arrow beside the object’s name in
the environment panel. The first row gives the object’s class (which we already saw).
S3 refers to the specific OOP system that this object uses, which in this case is the
most basic and least strict OOP system.

Alternatively, we can also use the Tidyverse glimpse() function, from the dplyr
package:

> library(dplyr)
> glimpse(my_tibble)
Rows: 2
Columns: 4
$ a <lgl> TRUE, FALSE
$ b <int> 1, 2
$ c <dbl> 3.14, 6.80
$ d <chr> "a", "b"

Notice that Table 2-2 also states the shorthand num, which does not appear in the out‐
put of glimpse(). This refers to the the “numeric” class, indicating either double (for
double-precision floating-point numbers) or integer type.

The preceding examples showed us that a data.frame is a heterogeneous, two-
dimensional collection of homogeneous one-dimensional vectors, each having the
same length. We’ll get to why R prints all those dollar signs (and no, it has nothing to
do with your salary!).
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Naming (Internal) Things
We already mentioned that snake case is the current trend in naming objects in R.
However, naming columns in a data frame is a different beast altogether because we
just inherit names from the first line of the source file. Data frames in base R,
obtained for example, using the read.*() family of functions or manually created
using the data.frame() function, don’t allow for any illegal characters. Illegal charac‐
ters include all white spaces and all reserved characters in R:

• Arithmetic operators (+, –, /, *, etc.)
• Logical operators (&, |, etc.)
• Relational operators (==, !=, >, <, etc.)
• Brackets ([, (, {, <, and their closers)

In addition, although they can contain numbers, they can’t begin with numbers. Let’s
see what happens:

# Base package version
data.frame("Weight (g)" = 15,
           "Group" = "trt1",
           "5-day check" = TRUE)
  Weight..g. Group X5.day.check
1         15  trt1         TRUE

All the illegal characters have been replaced with .! I know, right? R is really having a
good time mocking you OOP obsessives! On top of that, any variable that began with
a number is now prefaced with an X.

So what about importing a file with no header?

> diamonds_base_nohead <- read.csv("ch02-r4py/data/diamonds_noheader.csv",
                                   header = F)
> names(diamonds_base_nohead)
 [1] "V1"  "V2"  "V3"  "V4"  "V5"  "V6"  "V7"  "V8"  "V9"  "V10"

In base R, if we don’t have any header, the given names are V for “variable” followed
by the number of that column.

The same file read in with one of the readr::read_*() family of functions or created
with tibble() will maintain illegal characters! This seems trivial, but it’s actually a
serious critique of the Tidyverse, and it’s something to pay close attention to if you
start meddling in other people’s scripts. Let’s look:

> tibble("Weight (g)" = 15,
+            "Group" = "trt1",
+            "5-day check" = TRUE)
# A tibble: 1 x 3
  `Weight (g)` Group `5-day check`
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2 Berliner (noun): in Berlin, a resident of the city. Everywhere else: a tasty jelly-filled, sugar-powered donut.

         <dbl> <chr> <lgl>
1           15 trt1  TRUE

Notice the paired backticks for the column Weight (g) and 5-day check? You now
need to use this to escape the illegal characters. Perhaps this makes for more informa‐
tive commands, since you have the full name, but you’ll likely want to maintain short
and informative column names anyways. Information about the unit (e.g., g for
weight) is extraneous information that belongs in a dataset legend.

Not only that, but the names given to datasets without headers are also different:

> diamonds_tidy_nohead <- read_csv("ch02-r4py/data/diamonds_noheader.csv",
                                   col_names = F)
> names(diamonds_tidy_nohead)
 [1] "X1"  "X2"  "X3"  "X4"  "X5"  "X6"  "X7"  "X8"  "X9"  "X10"

Instead of V we get X! This takes us back to the Tidyverse as a distinct dialect in R. If
you inherit a script entirely in base R, you’ll have a tricky time if you just start throw‐
ing in Tidyverse functions with wild abandon. It’s like asking for a Berliner in a Berlin
bakery!2

Lists
Lists are another common data structure, but they’re not exactly what you expect
from a Python list, so the naming can be confusing. Actually, we’ve already encoun‐
tered lists in our very short R journey. That’s because the data.frame is a specific
class of type list. Yup, you heard that right.

> typeof(my_tibble)
[1] "list"

Table 2-1 tells us that a list is a one-dimensional, heterogeneous object. What that
means is that every element in this one-dimensional object can be a different type.
Indeed lists can contain not only vectors but other lists, data frames, matrices, and on
and on. In the case that each element is a vector of the same length, we end up with
tabular data that is then class data.frame. Pretty convenient, right? Typically, you’ll
encounter lists as the output from statistical tests; let’s take a look.

The PlantGrowth data frame is a built-in object in R. It contains two variables (i.e.,
elements in the list, aka columns in the tabular data): weight and group.

> glimpse(PlantGrowth)
Rows: 30
Columns: 2
$ weight <dbl> 4.17, 5.58, 5.18, 6.11, 4.50, 4.6...
$ group  <fct> ctrl, ctrl, ctrl, ctrl, ctrl, ctr...
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The dataset describes the dry plant weight (in grams; thank you, data legend) of 30
observations (i.e., individual plants, aka rows in the tabular data) grown under one of
three conditions described in groups: ctrl, trt1, and trt2. The convenient
glimpse() function doesn’t show us these three groups, but the classic str() does:

> str(PlantGrowth)
'data.frame': 30 obs. of  2 variables:
 $ weight: num  4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14...
 $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1...

If you’re getting nervous about <fct> and Factor w/ 3 levels, just hang tight—
we’ll talk about that after we’re done with lists.

Alright, let’s get to some tests. We may want to define a linear model for weight
described by group:

pg_lm <- lm(weight ~ group, data = PlantGrowth)

lm() is a foundational and flexible function for defining linear models in R. Our
model is written in formula notation, where weight ~ group is y ~ x. You’ll recog‐
nize the ~ as the standard symbol for “described by” in statistics. The output is a type
list of class lm:

> typeof(pg_lm)
[1] "list"
> class(pg_lm)
[1] "lm"

There are two things that we want to remind you of and build on here.

First, remember that we mentioned that a data frame is a collection of vectors of the
same length? Now we see that that just means that it’s a special class of a type list,
where each element is a vector of the same length. We can access a named element
within a list using the $ notation:

> names(PlantGrowth)
[1] "weight" "group"
> PlantGrowth$weight
 [1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.59
[15] 5.87 3.83 6.03 4.89 4.32 4.69 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15
[29] 5.80 5.26

Notice the way it’s printed, along a row, and the beginning of each row begins with a
[] with an index position in there. (We already mentioned that R begins indexing at
1, right?) In RStudio, you’ll get an autocomplete list of column names after typing $.

We can also access a named element within a list using the same notation:

> names(pg_lm)
 [1] "coefficients"  "residuals"     "effects"       "rank"
 [5] "fitted.values" "assign"        "qr"            "df.residual"
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 [9] "contrasts"     "xlevels"       "call"          "terms"
[13] "model"

You can see how a list is such a nice way to store the results of a statistical test since
we have lots of different kinds of output. For example, coefficients:

> pg_lm$coefficients
(Intercept)   grouptrt1   grouptrt2
      5.032      -0.371       0.494

is a named three-element-long numeric vector. (Although its elements are named, the
$ operator is invalid for atomic vectors, but we have some other tricks up our sleeve,
of course—see indexing with [] in “How to Find…Stuff ” on page 32.) We didn’t get
into the details, but you may be aware that given our data we expect to have three
coefficients (estimates) in our model.

Consider residuals:

> pg_lm$residuals
     1      2      3      4      5      6      7      8      9     10
-0.862  0.548  0.148  1.078 -0.532 -0.422  0.138 -0.502  0.298  0.108
    11     12     13     14     15     16     17     18     19     20
 0.149 -0.491 -0.251 -1.071  1.209 -0.831  1.369  0.229 -0.341  0.029
    21     22     23     24     25     26     27     28     29     30
 0.784 -0.406  0.014 -0.026 -0.156 -0.236 -0.606  0.624  0.274 -0.266

They are stored in a named 30-element-long numerical vector (remember we had 30
observations). So lists are pretty convenient for storing heterogeneous data and you’ll
see them quite often in R, although there is a concerted effort in the Tidyverse toward
data frames and their variants thereof.

Second, remember we mentioned that the . mostly doesn’t have any special meaning.
Well here’s one of the exceptions where the . does actually have a meaning. Probably
the most common use is when it specifies all when defining a model. Here, since
other than the weight column, PlantGrowth only had one other column, we could
have written:

lm(weight ~ ., data = PlantGrowth)

It’s not really necessary, since we only have one independent variable here, but in
some cases it’s convenient. The ToothGrowth dataset has a similar experimental setup,
but we’re measuring the length of tooth growth under two conditions: a specific sup‐
plement (supp) and its dosage (dose).

A note on variable types. By using the y ~ x formula, we’re say that
x is the independent or predictor variable(s) and y is dependent on
x, or the response to the predictor.
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3 A detailed exposition of model definitions is outside the scope of this text.

lm(len ~ ., data = ToothGrowth)
# is the same as
lm(len ~ supp + dose, data = ToothGrowth)

But like always, being explicit has its advantages, such as defining more precise
models:

lm(len ~ supp * dose, data = ToothGrowth)

Can you spot the difference between the two outputs? Specifying interactions is done
with the *.3

The Facts About Factors
Alright, the last thing we need to clear up before we continue is the phenomena of the
factor. Factors are akin to the pandas category type in Python. They are a wonder‐
ful and useful class in R. For the most part they exist and you won’t have cause to
worry about them, but do be aware, since their uses and misuses will make your life a
dream or a misery, respectively. Let’s take a look.

The name “factor” is very much a statistics term. We may refer to them as categorical
variables as Python does, but you’ll also see them referred to as qualitative and dis‐
crete variables, in textbooks and also in specific R packages, like RColorBrewer and
ggplot2, respectively. Although these terms all refer to the same kind of variable,
when we say “factor” in R, we’re referring to a class of type integer. It’s like how
data.frame is a class of type list. Observe:

> typeof(PlantGrowth$group)
[1] "integer"
> class(PlantGrowth$group)
[1] "factor"

You can easily identify a factor because in both the output from str() (see “Lists” on
page 28) and in plain vector formatting, the levels will be stated:

> PlantGrowth$group
 [1] ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl
 [11] trt1 trt1 trt1 trt1 trt1 trt1 trt1 trt1 trt1 trt1
 [21] trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2
Levels: ctrl trt1 trt2

The levels are statisticians’ names for what are commonly called groups. Another 
giveaway is that, although we have characters, they are not enclosed in quotation
marks! This is very curious because we can actually treat them as characters, even
though they are type integer (see Table 2-2). You may be interested to look at the
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internal structure of an object using dput(). Here we can see that we have an integer
vector c(1L...) and two attributes, the label and the class:

> dput(PlantGrowth$group)
structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
            2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
            3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L),
          .Label = c("ctrl", "trt1", "trt2"),
          class = "factor")

The labels define the names of each level in the factor and are mapped to the integers,
1 being ctrl, and so on. So when we print to the screen we only see the names, not
the integers. This is commonly accepted to be a legacy use case from the days when
memory was expensive and it made sense to save an integer many times over instead
of a potentially long character vector.

So far, the only kind of factor we’ve seen was really describing a nominal variable (a
categorical variable with no order), but we have a nice solution for ordinal variables
also. Check out this variable from the diamonds dataset:

> diamonds$color
[1] E E E I J J I H E H ..
Levels: D < E < F < G < H < I < J

The levels have an order, in the sense that D comes before E, and so on.

How to Find…Stuff
Alright, by now we’ve seen how R stores data and various subtleties that you’ll need to
keep in mind, in particular things that may trip up a Pythonista. Let’s move on to log‐
ical expressions and indexing, which is to say: how to find…stuff?

Logical expressions are combinations of relational operators, which ask yes/no ques‐
tions of comparison, and logical operators, which combine those yes/no questions.

Let’s begin with a vector:

> diamonds$price > 18000
   [1] FALSE FALSE FALSE FALSE FALSE FALSE
   ...

This simply asks which of our diamonds are more expensive than $18,000. There are
three key things to always keep in mind here.

First, the length of the shorter object, here the unassigned numeric vector 18000 (one
element long) will be “recycled” over the entire length of the longer vector, here the
price column from the diamonds data frame accessed with the $ notation (53,940 ele‐
ments). In Python you may refer to this as broadcasting when using NumPy arrays,
and vectorization as a distinct function. In R, we simply refer to both as vectorization
or vector recycling.
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Second, this means that the output vector is the same length as the length of the
longest vector, here 53,940 elements.

Third, anytime you see a relational or logical operator, you know that the output vec‐
tor will always be a logical vector. (Logical as in TRUE/FALSE, not as in Mr. Spock.)

If you want to combine questions, you’ll have to combine two complete questions,
such as really expensive and small diamonds (classy!):

> diamonds$price > 18000 & diamonds$carat < 1.5
   [1] FALSE FALSE FALSE FALSE FALSE FALSE
   ...

Notice that all three key points hold true. When I introduced the atomic vector types,
I failed to mention that logical is also defined by 1 and 0. This means we can do math
on logical vectors, which is very convenient. How many expensive little diamonds do
we have?

> sum(diamonds$price > 18000 & diamonds$carat < 1.5)
[1] 9

(Not enough, if I’m being honest.) What proportion of my dataset do they represent?
Just divide by the total number of observations:

> sum(diamonds$price > 18000 & diamonds$carat < 1.5)/nrow(diamonds)
[1] 0.0001668521

So that’s asking and combining questions. Let’s take a look at indexing using [].
You’re already familiar with [], but I feel that they are more straightforward in R
right out of the box. A summary is given in Table 2-3.

Table 2-3. Indexing

Use Data object Result
xx[i] Vector Vector of only i elements

xx[i] List, Data frame, tibble The i element maintaining the original structure

xx[[i]] List, Data frame, tibble The i element extracted from a list

xx[i,j] Data frame, tibble, or matrix The i rows and j columns of a data frame, tibble, or matrix

xx[i,j,k] Array The i rows, j columns, and k dimension of an array

i, j, and k are three different types of vector that can be used inside []:

• An integer vector
• A logical vector
• A character vector containing names, if the elements are named
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This should be familiar to you already from Python. For integer and logical vectors,
these can be unassigned vectors, or objects or functions that resolve to integer or logi‐
cal vectors. Numbers don’t need to be type integer, although whole numbers are
clearer. Using numeric/double rounds down to the nearest whole number, but try to
avoid using real numbers when indexing, unless it serves a purpose.

Let’s begin with integers. We’ll take another little detour here to discuss the omnipre‐
sent : operator, which won’t do what your Pythonista brain tells you it should do.
We’ll begin with a built-in character vector, letters, which is the same as having a
column in a data frame, like PlantGrowth$weight:

> letters[1] # The 1st element (indexing begins at 1)
[1] "a"

So that’s pretty straightforward. How about counting backward?

> letters[-4] # Everything except the 4th element,
> # (*not* the fourth element, counting backward!)
 [1] "a" "b" "c" "e" "f" "g" "h" ...

Nope, that’s not happening, the - means to exclude an element, not to count back‐
ward, but it was a nice try. We can also exclude a range of values:

> letters[-(1:20)] # Exclude elements 1 through 20
[1] "u" "v" "w" "x" "y" "z"

and of course index a range of values:

> letters[23:26] # The 23rd to the 26th element
[1] "w" "x" "y" "z"

And remember, we can combine this with anything that will give us an integer vector.
length() will tell us how many elements we have in our vector, and lhs:rhs is short‐
hand for the function seq(from = lhs, to = rhs, by = 1), which creates a
sequence of values in incremental steps of by, in this case defaulting to 1.

>    # The 23rd to the last element
[1] "w" "x" "y" "z"

So that means you always need an lhs and an rhs when using :. It’s a pity, but this
isn’t going to work:

> letters[23:] # error

Using the [] inappropriately gives rise to a legendary and mysterious error message
in R:

> df[1]
Error in df[1] : object of type 'closure' is not subsettable
> t[6]
Error in t[6] : object of type 'closure' is not subsettable
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Can you tell where we went wrong? df and t are not defined data storage objects that
we can index! They are functions, and thus they must be followed by () where we
provide the arguments. [] are always used to subset, and these functions (df() and
t()) are functions of type closure, which are not subsettable. So it’s a pretty clear error
message actually, and a good reminder to not call objects using ambiguous, short
names, or indeed to get confused between functions and data storage objects.

That’s all fine and good, but you’re probably aware that the true power in indexing
comes from using logical vectors to index specific TRUE elements, just like using type
bool in Python. The most common way of obtaining a logical vector for indexing is
to use a logical expression, as we’ve discussed. This is exactly what happens with
masking in NumPy.

So what are the colors of those fancy diamonds?

> diamonds$color[diamonds$price > 18000 & diamonds$carat < 1.5]
[1] D D D D F D F F E
Levels: D < E < F < G < H < I < J

Here, we’re using price and carat to find the colors of the diamonds that we’re interes‐
ted in. Not surprisingly, they are the best color classifications. You may find it annoy‐
ing that you have to write diamonds$ repeatedly, but we would argue that it just
makes it more explicit, and it’s what happens when we reference pandas Series in
Python. Since we’re indexing a vector, we get a vector as output. Let’s turn to data
frames. We could have written the preceding indexing command as:

> diamonds[diamonds$price > 18000 & diamonds$carat < 1.5, "color"]
# A tibble: 9 x 1
  color
  <ord>
1 D
2 D
3 D
4 D
5 F
6 D
7 F
8 F
9 E

As you would expect, in [i,j], i always refers to the rows (observations), and j
always refers to columns (variables). Notice that we also mixed two different types of
input, but it works because they were in different parts of the expression. We use a
logical vector that is as long as the data frame’s number of observations (thank you,
vector recycling) to obtain all the TRUE rows, and then we used a character vector to
extract a named element; recall that each column in a data frame is a named element.
This is a really typical formulation in R. The output is a data frame, specifically a tib‐
ble because we used indexing on the diamonds data frame and not on a specific
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one-dimensional vector therein. Not to get bogged down with the topic, but it is
worth noting that if we didn’t have a tibble, indexing for a single column (in j) would
return a vector:

> class(diamonds)
[1] "data.frame"
> diamonds[diamonds$price > 18000 & diamonds$carat < 1.5, "color"]
[1] D D D D F D F F E
Levels: D < E < F < G < H < I < J

This is indeed confusing and highlights the necessity to always be aware of the class
of our data object. The Tidyverse tries to address some of this by maintaining data
frames even in those instances where base R prefers to revert to a vector. The Tidy‐
verse functions for indexing, shown in the following, make things easier. (The base
package shorthand, subset(), works much in the same way, but filter() works bet‐
ter when used in a Tidyverse context.)

> diamonds %>%
+   filter(price > 18000, carat < 1.5) %>%
+   select(color)
# A tibble: 9 x 1
  color
  <ord>
1 D
2 D
3 D
4 D
5 F
6 D
7 F
8 F
9 E

We introduced the principles behind the Tidyverse in the first part of the book, and
now we’re seeing it in action. The forward pipe or pipe operator, "%>%“, in the preced‐
ing code allows us to unnest objects and functions. For example, we could have
written:

> select(filter(diamonds, price > 18000, carat < 1.5), color)

That has the format of a long, nested function that is quite difficult to follow. We can
pronounce %>% as “and then” and thus read the entire command above as “Take the
diamonds dataset and then filter using these criteria and then select only these col‐
umns.” This goes a long way in helping us to literally read and understand code and is
why dplyr is described as the grammar of data analysis. Objects, like tibbles, are the
nouns, %>% is our punctuation, and functions are the verbs.

Although Tidyverse functions are often piped together using %>%, this operator can be
used to unnest nested functions. Given this widespread use, a native forward pipe
operator, "|>“, was included in R v4.1 (released on 18 May 2021, as we finalized this
text). It is unclear how useRs will adopt it, given the dominance of %>% and some
slight differences between the two operators. For now, you can safely stick with %>%.
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The five most important verbs in dplyr are listed in Table 2-4.

Table 2-4. Function description

Function Works on Description

filter() rows Use a logical vector to retain only TRUE rows

arrange() rows Reorder rows according to values in a specific column

select() columns Use a name or a helper function to extract only those columns

summarise() columns Apply aggregation functions to a column

mutate() columns Apply transformation functions to a column

We already saw filter() and select() in action, so let’s take a look at applying func‐
tions with summarise() and mutate(). summarise() is used to apply an aggregation
function, which returns a single value like the mean, mean(), or standard deviation,
sd(). It’s common to see summarise() used in combination with the group_by()
function. In our analogy of grammatical elements, group_by() is an adverb; it modi‐
fies how a verb operates. In the following example, we use group_by() to add a Group
attribute to our data frame, and the functions applied in summarise are thus group-
specific. It’s just like the .groupby() method for pd.DataFrames!

> PlantGrowth %>%
+   group_by(group) %>%
+   summarise(avg = mean(weight),
+             stdev = sd(weight))
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 3 x 3
  group   avg stdev
  <fct> <dbl> <dbl>
1 ctrl   5.03 0.583
2 trt1   4.66 0.794
3 trt2   5.53 0.443

mutate() is used to apply a transformation function, which returns as many outputs
as inputs. In these cases it’s not unusual to use both Tidyverse syntax and native [] in
combination to index specific values. For example, this dataset contains the area
under irrigation (thousands of hectares) for different regions of the world at four dif‐
ferent time points:

> irrigation <- read_csv("R4Py/irrigation.csv")
Parsed with column specification:
cols(
  region = col_character(),
  year = col_double(),
  area = col_double()
)
> irrigation
# A tibble: 16 x 3
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   region      year  area
   <chr>      <dbl> <dbl>
 1 Africa      1980   9.3
 2 Africa      1990  11
 3 Africa      2000  13.2
 4 Africa      2007  13.6
 5 Europe      1980  18.8
 6 Europe      1990  25.3
 7 Europe      2000  26.7
 8 Europe      2007  26.3
...

We may want to measure the area fold change relative to 1980 for each region:

irrigation %>%
  group_by(region) %>%
  mutate(area_std_1980 = area/area[year == 1980])
# A tibble: 16 x 4
# Groups:   region [4]
   region      year  area area_std_1980
   <chr>      <dbl> <dbl>         <dbl>
 1 Africa      1980   9.3          1
 2 Africa      1990  11            1.18
 3 Africa      2000  13.2          1.42
 4 Africa      2007  13.6          1.46
 5 Europe      1980  18.8          1
 6 Europe      1990  25.3          1.35
 7 Europe      2000  26.7          1.42
 8 Europe      2007  26.3          1.40
 ...

Just like with mutate(), we can add more transformations, like the percentage change
over each time point:

> irrigation <- irrigation %>%
+   group_by(region) %>%
+   mutate(area_std_1980 = area/area[year == 1980],
+          area_per_change = c(0, diff(area)/area[-length(area)] * 100))
> irrigation
# A tibble: 16 x 5
# Groups:   region [4]
   region      year  area area_std_1980 area_per_change
   <chr>      <dbl> <dbl>         <dbl>           <dbl>
 1 Africa      1980   9.3          1               0
 2 Africa      1990  11            1.18           18.3
 3 Africa      2000  13.2          1.42           20.0
 4 Africa      2007  13.6          1.46            3.03
 5 Europe      1980  18.8          1               0
 6 Europe      1990  25.3          1.35           34.6
 7 Europe      2000  26.7          1.42            5.53
 8 Europe      2007  26.3          1.40           -1.50
 ...
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Reiterations Redo
Notice that we didn’t need any looping in the preceding examples. You may have
intuitively wanted to apply a for loop to calculate aggregation or transformation
functions for each region, but it’s not necessary. Avoiding for loops is somewhat of a
past time in R, and is found in the base package with the apply family of functions.

Because vectorization is so fundamental to R, there’s a bit of an unofficial contest to
see how few for loops you can write. We imagine some useRs have a wall sign: “Days
since last for loop:” like factories have for accidents.

This means there are some very old methods for reiterating tasks, along with some
newer methods that make the process more convenient.

The old-school method relies on the apply family of functions, listed in Table 2-5.
Except for apply(), pronounce them all as the first letter and then apply, hence “t
apply” not “tapply.”

Table 2-5. Base package apply family

Function Use

apply() Apply a function to each row or column of a matrix or data frame

lapply() Apply a function to each element in a list

sapply() Simplify the output of lapply()

mapply() The multivariate version of sapply()

tapply() Apply a function to values defined by an index

emapply() Apply a function to values in an environment

There’s a bit of a trend to disavow these workhorses of reiteration but you’ll still see
them a lot, so they’re worth getting familiar with. Doing so will also help you to
appreciate why the Tidyverse arose. As an example, let’s return to the aggregation
functions we applied to the PlantGrowth data frame above. In the apply family of
functions, we could have used:

> tapply(PlantGrowth$weight, PlantGrowth$group, mean)
 ctrl  trt1  trt2
5.032 4.661 5.526
> tapply(PlantGrowth$weight, PlantGrowth$group, sd)
     ctrl      trt1      trt2
0.5830914 0.7936757 0.4425733

You can imagine reading this as “take the weight column from the PlantGrowth data‐
set, split the values according to the label in the group column in the PlantGrowth
dataset, apply the mean function to each group of values, and then return a named
vector.”
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4 If you want to read more about this topic, check out Hadley Wickham’s paper.

Can you see how tedious this is if you want to add more functions on there? Named
vectors can be convenient, but they are not really a typical way that you want to store
important data.

One attempt to simplify this process was implemented in plyr, the precursor to dplyr.
plyr is pronounced plier, like the small multifunctional hand-held tool. We use it as
such:

library(plyr)

ddply(PlantGrowth, "group", summarize,
      avg = mean(weight))

This is still sometimes used today, but it has mostly been superseded by a data frame-
centric version of the package, hence the d in dplyr (say d-plier):

library(dplyr)
PlantGrowth %>%
  group_by(group) %>%
  summarize(avg = mean(weight))

But to be clear, we could have returned a data frame with other very old functions:

> aggregate(weight ~ group, PlantGrowth, mean)
  group weight
1  ctrl  5.032
2  trt1  4.661
3  trt2  5.526

Wow, what a great function, right? This thing is super old! You’ll still see it around,
and why not? Once you wrap your head around it, it’s elegant and gets the job done,
even though it still only applies one function. However, the ongoing push to use a
unified Tidyverse framework, which is easier to read and arguably easier to learn,
means the ancient arts are fading into the background.

These functions have existed since the early days of R and reflect, intuitively, what 
statisticians do all the time. The split data into chunks, defined by some property
(rows, columns, categorical variables, objects), then they apply some kind of action
(plotting, hypothesis testing, modeling, etc.), and then they combine the output
together in some way (data frame, list, etc.). The process is sometimes called split-
apply-combine. Realizing that this process kept repeating itself started to clarify for
the community how to start thinking about data and, indeed, how to actually orga‐
nize data. From this the idea of “tidy” data was born.4

As a last example of iterations, you’re probably familiar with the python map() func‐
tion. An analogous function can be found in the Tidyverse purrr package. This is
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convenient for reiterating over lists or elements in a vector, but it’s beyond the scope
of this book.

Final Thoughts
In Python, you often hear about the Python way (“Pythonic”). This means the proper
Python syntax and the preferred method to perform a specific action. This doesn’t
really exist in R; there are many ways to go about the same thing, and people will use
all varieties! Plus, they’ll often mix dialects. Although some dialects are easier to read
than others, this hybridization can make it harder to get into the language.

Added to this is the constant tweaking of an expanding Tidyverse. Functions are tag‐
ged as experimental, dormant, maturing, stable, questioning, superseded, and
archived. Couple that with relatively lax standards for project-specific package man‐
agement or for the use of virtual environments, and you can imagine a certain
amount of growing frustration.

R officially celebrated its 20th birthday in 2020, and its roots are much older than
that. Yet, it sometimes feels like R is currently experiencing a teenage growth spurt.
It’s trying to figure out how it suddenly got a lot bigger and can be both awkward and
cool at the same time. Blending the different R dialects will take you a long way in
discovering its full potential.
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CHAPTER 3

Python for UseRs

Rick J. Scavetta

Welcome, brave useR, to the wonderful world of the Pythonista! For many useRs, this
brave new world may appear more varied—and thus more inconsistent and confus‐
ing—than what they’re used to in R. But don’t fret over diversity—celebrate it! In this
chapter, I’ll help you navigate through the rich and diverse Python jungle, highlight‐
ing various paths (workflows) that your Python-using colleagues may have taken and
that you may choose to explore later on. Meanwhile, know that you’ll eventually find
the path that best suits you and your work environment; this will change over time
and may not be the one outlined here. Like any good trek, use this route as a guide,
not a rule book.

I’ll cover the essentials of the four elements I mentioned in the introduction to this
part: functions, objects, logical expressions, and indexing. But I’ll begin by addressing
three questions:

Question 1
Which version and build (distribution) to use? There are a few different versions
and builds of Python to choose from, in contrast to R.

Question 2
Which tools to use? The wide variety of IDEs, text editors, and notebooks, plus
the many ways of implementing virtual environments, adds more choices to
make.

Question 3
How does Python the language compare to R the language? Wrapping your head
around an OOP-centric world, with a host of classes, methods, functions, and
keywords provides another barrier to entry.

43



1 Indeed, the other builds are seldom mentioned in proper company.

I’ll address each of these questions in turn. My goal is to get you comfortable enough
with reading and writing Python so you can continue your bilingual journey in
Part III and Part IV. I’m not setting out to provide a full-fledged, deep introduction to
Python for Data Science. For that purpose, see O’Reilly’s Python for Data Analysis by
Wes McKinney and Python Data Science Handbook by Jake VanderPlas; this chapter
will help you appreciate those books even more.

If you’re eager to get on with it and start using Python, you can skip to the section on 
notebooks, “Notebooks” on page 57, and visit the Google Colab Notebook for the les‐
son on Python, or access this chapter’s script at our book repository on GitHub.

Versions and Builds
Although there are a few different distributions of R, useRs mostly stick with vanilla
R obtained from r-project.org.1 For Python, there are at least four common Python
builds (aka distributions) to contend with. In each case you’ll also want to consider
the Python version as well.

First, you’ll notice that you likely have a system version of Python already installed.
On my machine, running macOS Big Sur (v11.1), I see this version of Python using
the following terminal command:

$ python --version
Python 2.7.16

Interestingly, macOS also has python3 built in:

$ python3 --version
Python 3.8.6

These are the Python installations that macOS uses internally; there’s no need to
touch them.

Second, we have vanilla Python—the bare-bones, straight-from-the-source version of
Python. At the time of writing, this is version 3.9. Version 2.x is no longer supported,
and you should be using 3.x for future data science projects. Until you’re sure all
packages you’ll use are compatible with the latest version, it’s a safe bet to stick to the
last minor update, 3.8 in this case. Indeed, you may have multiple minor versions on
your system.

To install the specific version you want, visit the Python website and follow the
instructions on the download page.

Installation varies depending on your system. As such, the official Python Setup and
Usage guide is the authoritative resource. If you encounter installation issues, a good

44 | Chapter 3: Python for UseRs

https://oreil.ly/hLi6i
https://github.com/moderndatadesign/PyR4MDS
https://www.r-project.org
https://www.python.org
https://oreil.ly/xZEhZ
https://oreil.ly/xZEhZ


2 You’ll need to install Homebrew if you want to go that route for macOS.
3 You’ll need a Google account to access this free resource.

starting point is to perform a literal web search (encase in double quotes) for the
generic part of the error message.

Table 3-1 provides other sources, but you’re well advised to just go to the source.2

Table 3-1. Installing Python

Platform Site Alternative
Linux python.org Python 3 is already installed.

macOS python.org Use brew install python3 in the terminal.

Windows python.org Install Python from the Windows Store.

Third, there are two common Conda builds: Anaconda (aka Conda) and Miniconda.
Conda offers package, dependency, and environment management for several pro‐
gramming languages, including Python and R, although it is seldomly used for R.
These open source builds include Python, a suite of packages useful for data science,
and a collection of IDEs (including RStudio). Anaconda comes in a free individual
version plus various commercial versions. As the name suggests, Miniconda is a min‐
imal installer. We’ll see Miniconda make a reappearance in the last part of the book.

The Anaconda website has detailed instructions for installation. You’ll notice that
Anaconda may not come packaged with the latest version of Python. For example, at
the time of writing, Anaconda comes packaged with Python 3.8, not 3.9. So this pro‐
vides some justification for our preference of vanilla Python 3.8, as mentioned previ‐
ously. Anaconda is a popular build, but for our purposes we’ll stick with vanilla
Python to avoid the extra bells and whistles that, at this point, would only serve to
distract us. Thus, I won’t consider this option further but will mention some signifi‐
cant differences as needed if you choose to go down this path.

Fourth, you may decide to not use a local Python installation and instead use the
popular online version of Python provided by Google Colab Notebooks.3 There are
other online notebook tools, but it’s beyond the scope of this book to detail all of
them. Notebooks are akin to R Markdown documents but JSON-based. We’ll discuss
them in more detail later on.

I bet you can already guess that this early-stage diversity can result in downstream
confusion when installation-specific issues arise. Moving forward, we’ll assume you
have a local or cloud-based installation of Python ready to go.
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4 Again, although R is supported, useRs seldom work in VS Code.

Standard Tooling
Similar to R, there are many ways to access Python. Common methods include using
the command line, IDEs, cloud-based IDEs, text editors, and notebooks. For simplic‐
ity, I’m not going to focus on executing Python on the command line. If you’re famil‐
iar with executing scripts on the command line, this is familiar territory. If not, you’ll
cross that bridge when you come to it.

IDEs include JupyterLab, Spyder, PyCharm, and our beloved RStudio. Cloud-native
IDEs include AWS Cloud9. These are all variations on a theme, and in my experience
are not typically favored by Pythonistas, although there is a trend toward using
cloud-based tools. It may sound strange that IDEs are not that popular. Why not use
an IDE if you have a great one available? I think the answer is twofold. First, no IDE
managed to position itself as the dominant, de facto, choice among Pythonistas like 
RStudio has among useRs. Second, because Python use cases are so varied, including
often being executed on the command line itself, coding with IDEs just wasn’t attrac‐
tive for many Pythonistas, especially if they came from a coding background and felt
comfortable without an IDE. For me, this feeds a bit into a narrative that says Python
is both more difficult and better than R. Both are incorrect! Sorry :/ Nonetheless, you
may be tempted to begin using Python with a comfortable-looking IDE. Here, we
make the argument that text editors will serve you better in the long run. We’ll get
back to RStudio in the last part of the book as we bring Python and R together in a
single script. For now, try to resist the urge to default to an IDE but watch for devel‐
opments in cloud platforms that may direct future trends.

Text editors are the most common and seemly preferred tool for composing pure
Python scripts. There are a host of fantastic text editors to choose from, waxing and
waning in popularity year-on-year. Sublime, Atom, Visual Studio Code (VS Code),
and even the classic editors Vim and Emacs, among many others, are in common use.
Nonetheless, VS Code, an open source editor developed and strongly supported by
Microsoft, has emerged in the past few years as the top choice. A marketplace for
extensions means that this editor provides strong and easy support for a variety of
languages, including Python and R.4 Thus, we’ll focus on VS Code. Your first exercise
is to obtain and install VS Code.
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The first time you open VS Code, you’ll be greeted with the welcome screen where
you can choose your theme (light, in our case), and install the Python language
extension right away, as shown in Figure 3-1.

Figure 3-1. The VS Code welcome screen

When you click on the blank document icon in the upper left, you’ll be requested to
open a folder or clone a Git repository (from GitHub, for example), as shown in
Figure 3-2. If you’ve cloned the book repo, use that; otherwise, use any folder you
like. This is like opening a project in RStudio.

You’ll also see files in the folder in the left sidebar. Open ch03-py4r/py4r.py, as in
Figure 3-3.
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Figure 3-2. Opening a folder as a workspace

Figure 3-3. An opened folder, Python script, and extension guide
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5 Astute userRs may have noticed that a Command Palette, invoked with the same keyboard shortcuts, was
added to RStudio v1.4 in late 2020.

Because of the file extension, VS Code has automatically detected that you want to
use a Python interpreter for this document. VS Code, like many other text editors,
can execute code directly from the document if it knows which interpreter to use.
You’ll be greeted with the extension welcome page, and the blue footer notes the
Python version that you’re using. Remember that you may have many versions
installed on your system. Here, I’m using v3.8.6.

The first item on the extension’s welcome page is “Create a Jupyter Notebook.” We’ll
get to that soon enough; for now, it’s worth noting that we can use VS Code for both
scripts and notebooks. Also note that the first bullet point in that item tells us that to
open a notebook we should run a command in the Command Palette. You can access
the Command Palette with the keyboard shortcut Shift-Command-P on a Mac (or
Shift + Ctrl + P on a PC).5 Return to our script and open the Command Palette. This
is where you’ll execute all variety of commands to make your life as a Pythonista eas‐
ier. The Command Palette is a relatively new feature in RStudio but has been a stan‐
dard way to navigate text editors for quite a while. Each extension you install from
the marketplace will add more commands that you can access here. Our first com‐
mand will be to “Create New Integrated Terminal (in Active Workspace)”
(Figure 3-4). You can get this by beginning to type the command and then let auto‐
complete work its magic. Make sure you choose the “(in Active Workspace)” option.
Remember, this is like an RStudio project, so we want to remain in our Active
Workspace.

So by now we’ve settled on a text editor and we have our first (empty) Python script.
It looks like we’re ready to go—but not quite! We must address two crucial factors
that you’ll encounter each time you want to create a new Python project:

• Virtual (development) environment
• Installing packages
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Figure 3-4. Accessing the Command Palette

Virtual Environments
Most useRs are accustomed to using RStudio projects, which keep the working direc‐
tory tied to the project directory. These are convenient, in that we don’t need to hard-
code paths and are encouraged to keep all data and scripts in one directory. You’ll
already have that when opening an entire folder in a VS Code workspace.

A major downside of RStudio projects and VS Code workspaces is that they don’t
provide portable, reproducible development environments! Many useRs have a sin‐
gle, global installation of each package (see .libPaths()) and rarely specify the R
version.

Now, dear useR, let’s be honest with each other: if you haven’t already, at some point
you’ll encounter the problem of package version conflicts. You’ve updated a package
globally and now an old script is defunct because it’s calling a deprecated function, or
using a function’s default arguments that have since changed, or for any number of
other reasons due to package version conflicts. This is a surprisingly common occur‐
rence in R and is a truly dismal practice when working over a long period of time or
collaboratively. There have been many attempts to implement some kind of con‐
trolled development environment in R over the years. The most recent, and hopefully
the solution that will finally stick, is renv. If you haven’t kept up with developments
there, please visit the package website from RStudio.
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Pythonistas have long used virtual environments to maintain the future compatibility
of their projects, a sign of the programming-first approach of Python’s origins. Here,
a virtual environment is simply a hidden subdirectory within a project folder, called
for example, .venv. The . is what makes it hidden. You have many hidden files and
directories all over your computer, and for the most part they’re hidden because you
have no business sticking your fingers in there. Inside .venv you’ll find the packages
used in this specific project, and information about which Python build this project
uses. Since each project now contains a virtual environment with all the packages and
the appropriate package versions (!), you’re guaranteed that the project will continue
working indefinitely, so long as that virtual environment exists. We can visualize the
potential dependency issues between different machines as in Figure 3-5, which high‐
lights the benefit of having a single “source of truth” regarding package versions.

Figure 3-5. Sources of conflict in Python environments

Like everything in Python, there are many ways to make a virtual environment. We
can use the venv or virtualenv packages. If you’re using Anaconda, you’ll use the
Conda alternative, which we won’t cover here. There are some subtle differences
between venv and virtualenv, but at this point in the story they are irrelevant; let’s just
stick with venv. In your new terminal window, execute one of the commands in
Table 3-2 depending on your platform, as I’ve done in Figure 3-6.
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Table 3-2. Creating (and activating) a virtual environment with venv

Platform Create Activate (prefer VS Code autoactivate)
macOS X and Linux python3 -m venv .venv source .venv/bin/activate

Windows py -3 -m venv .venv .venv\scripts\activate

Figure 3-6. Creating a new virtual environment in our active workspace

After creating the virtual environment, you must activate it. The terminal commands
for this are given in Table 3-2, but it’s more convenient to let VS Code do what it does
best. It will automatically detect your new virtual environment and ask if you want to
activate it (see Figure 3-7). Go for it! Notice that the Python interpreter in the lower
left will also explicitly mention (.venv): venv and in your open folder you’ll have
two hidden folders, .venv and .vscode (Figure 3-7).
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Figure 3-7. An active virtual environment

We’ll get to package installation in a second; for now let’s try to execute our first
“Hello, world!” command. Type the following command in your script:

#%%
print('Hello, world!')

Actually the print is not necessary, but it makes what we’re trying to do explicit. That 
looks a lot like a simple R function, right? The #%% is also not necessary, but it’s a
lovely feature of the Python extension in VS Code and is highly recommended! Typ‐
ing #%% allows us to break up our long script into executable chunks. It’s akin to R
Markdown chunks, but much simpler and used in plain Python scripts. To execute
the command, press Shift-Enter or click Run Cell, as shown in Figure 3-8.

You’ll be promptly asked to install the ipyKernel. Do that, and you’ll get the output
present in the new upper-right pane, visible in Figure 3-9.
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Figure 3-8. Executing your first code in Python

Figure 3-9. Viewing command output in the interactive Python viewer
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Alright, now we’re in business. That seems like a lot of work, but once you do it a
couple times you’ll develop a routine and get the hang of it!

Installing Packages
So far in the story we have installed some version of Python and accessed a work‐
space, like an R project, from within VS Code. We’ve also created a virtual environ‐
ment, which we’re now ready to populate with our favorite data science packages. If
you took the Conda route, you’ll have used different commands but you’ll also be set
to go with the most common data science packages preinstalled. That sounds really
nice, but you may find that when you need to collaborate with other Python develop‐
ers, e.g., data engineers or system administrators, they probably won’t be using Ana‐
conda. We feel that there’s also something to be said for getting to the heart of Python
without all the bells and whistles that Anaconda provides. Thus we’ve gone the vanilla
route.

Before we get into packages, let’s review some necessary terminology. In R, a library is
a collection of individual packages. The same holds true for Python, but the use of
library and package is not as strict. For example, pandas, the package that provides the
pd.DataFrame class of objects, is referred to as both a library and a package on the
pandas website itself. This mixture of the terms is common among Pythonistas, so if
you’re a stickler for names, don’t let it confuse or bother you. However, modules are
useful to note. A package is a collection of modules. This is useful to know since we
can load an entire package or just a specific module therein. Thus, in general: library
> package > module.

In R, you’d install packages from CRAN with the install.packages() function from
within R itself. In Python, there are two equivalents of CRAN: PyPI (the Python
Package Installer), for when using vanilla Python, and Conda, for when using Ana‐
conda or Miniconda (we’ll also see how to install packages in Google Colab directly
in the online notebook later on). To install packages from PyPI using vanilla Python,
you’ll have to execute a command in the terminal. Recall that we still have our active
terminal window in VS Code open from earlier. Execute the command pip install
matplotlib in the terminal to install the matplotlib package in your virtual environ‐
ment, as depicted in Figure 3-10. pip is the package installer for Python, which also
comes in various versions.
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Figure 3-10. Installing a package into a virtual environment using the command line

Packages that you’ll install in practically every virtual environment include NumPy,
pandas, matplotlib, seaborn, and SciPy. You won’t have to install all of them all the
time since their package dependencies will take care of that. If they are already
installed, pip will tell you and will not install anything further. The most common
error messages you’ll encounter here are when your package version is incompatible
with your Python version. For this, you can either use a different Python kernel (the
Python execution backend) for your project, or specify the exact package version you
want to install. Like in R, you just need to install the package once, but you’ll need to
import it (i.e., initialize it) every time you activate your environment. It seems conve‐
nient that package installation is done in the terminal, separate from importing in the
script. You’ve probably seen many stray install.packages() functions in R scripts,
which is kind of annoying.

There are two more important points I want to mention. First, check all the packages
installed in your environment, and their versions, in the terminal with:

$ pip freeze

Second, pipe this output to a file called requirements.txt by executing the following
command:
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$ pip freeze > requirements.txt

Other users can now use requirements.txt to install all the necessary packages by
using the following command:

$ pip install -r requirements.txt

Notebooks
If you’ve followed the tutorial thus far, you’re ready to proceed to the third question
and begin exploring the Python language. Nonetheless, it’s worthwhile reviewing 
notebooks, so read on. If you had a hard time getting Python set up locally, don’t fret!
Jupyter Notebooks is where you can take a deep breath, set your installation issues
aside, and jump in afresh.

Jupyter Notebooks are built on the backbone of IPython, which originated in 2001.
Jupyter, which stands for JUlia, PYThon, and R, now accommodates dozens of pro‐
gramming languages and can be used in the JupyterLab IDE or straight-up Note‐
books in Jupyter. Notebooks allow you to write text using markdown, add code
chunks, and see the inline output. It sounds a lot like R Markdown! Well, yes and no.
Under the hood an R Markdown is a flat text file that gets rendered as an HTML,
DOC, or PDF. Notebooks are exclusively JSON-based HTML and can natively handle
interactive components. For useRs, this is kind of like an interactive R Markdown
with a shiny runtime by default. This means that you don’t compose a notebook as a
flat text file, which is an important distinction when considering editing potential.

Coding in Python often consists of pure notebooks. For example, if you venture into 
cloud platforms that work with big data for machine learning (ML), like AWS Sage‐
Maker, Google AI Platform, or Azure Machine Learning Studio, you’ll start with
notebooks. As we’ve already seen, they’re supported by VS Code. Other online ver‐
sions include Kaggle competitions and published Jupyter Notebooks. Another variety
of online notebooks is found in the Google Colab service (see Figure 3-11). This
allows you to produce and distribute online notebooks with a Python backend and is
what we’ll use for exploring notebooks.

To get familiar working with notebooks, use this online tutorial from Jupyter. Just
click on the Notebook Basics panel and pay particular attention to the keyboard
shortcuts.

Open the Google Colab Notebook for this chapter to follow along.
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Figure 3-11. Examples for getting started with Python notebooks in using Google Colab

How Does Python, the Language, Compare to R?
By now you should have followed one of two paths. If you have installed Python
locally, you should have:

1. A project directory where you’ll store your data and script files.
2. A virtual environment set up within that directory.
3. The typical packages for data science installed in that virtual environment.

If you’ve decided to go the Google Colab route, you should have accessed this chap‐
ter’s notebook.

Now it’s time to start our project by importing the packages we’ll use. Here, we’ll see
again that there are a variety of ways of doing this, but most are standard. Let’s take a
look. In the book’s repository, you’ll find a practice script with the following com‐
mands, or you can follow along in the Google Colab Notebook.

As we go through these commands, we’ll introduce more new terminology—key‐
words, methods, and attributes—and discuss what they are in the context of Python.

First, we can import an entire package:
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6 But remember this for when we start using Python and R together because we’ll see something very similar.

import math # Functions beyond the basic math

This allows us to use functions from the math package. The math package is already
installed, so we didn’t need to use pip, but we do need to import it.

This is the first time we encounter a common and important aspect of the Python
language: keywords, which behave like R’s reserved words but are more numerous.
Right now there are 35 keywords in Python that can be placed in distinct groups (see
the Appendix). Here import is an import keyword. As a useR accustomed to func‐
tional programming, you’d use library(math) in R. So, in this case, you can think of
keywords as shortcuts to functions, which in many cases they are. That’s just like
operators in R (think <-, +, ==, &, etc.), which are just shortcuts to functions under the
hood. They’re not written in the classic function format, but they could be.

In short, keywords are reserved words that have very specific meanings. In this case,
import stands in for a function to import all the functions from the math package.
Many keywords act like this, but not all. We’ll see some examples in a second.

But first, now that we have the functions from the math package, let’s try this:

math.log(8, 2)

Here we see that the . has a specific meaning: inside the math package, access the
log() function. The two arguments are the digit and base. So you can see why the R
Tidyverse tends to use _ instead of . notation and why the prevalence of a meaning‐
less . in many R functions frustrates many users coming from OOP-centric
languages.

Second, we can import an entire package and give it a specific, typically standardized,
alias:

import pandas as pd      # For data frame and handling
import numpy as np       # Array and numerical processing
import seaborn as sns    # High level plotting

There’s our second keyword, as. Notice that it’s not really acting as a stand in for a
function unless we recall that <- is also a function. If we stretch our imaginations, we
can imagine this is like the following in R:

dp <- library(dplyr)       # nonsense, but just as an idea

UseRs wouldn’t ever do that, but it’s the closest analogous command.6 The as key‐
word is always used with import to provide a convenient alias for accessing a package
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7 Referring back to log(), you’re more likely to use np.log() instead of math.log() since it accepts a wider
variety of input types.

or module’s functions.7 Thus, it’s an explicit way to call the exact function we want.
Execute this function to import the dataset for future work:

plant_growth = pd.read_csv('ch03-py4r/data/plant_growth.csv')

Notice the . again? The preceding command is equivalent to this command in R:

plant_growth <- readr::read_csv("ch03-py4r/data/plant_growth.csv")

Third, we can import a specific module from a package:

from scipy import stats # e.g., for t-test function

There’s our third keyword, from. It lets us go inside the SciPy package and import
only the stats module.

Fourth, we can import a specific module from a package, also giving it a specific, typi‐
cally standardized, alias:

import matplotlib.pyplot as plt # Low level plotting
import statsmodels.api as sm    # Modeling, e.g., ANOVA

Finally, we can also import only a specific function from a package:

from statsmodels.formula.api import ols # For ordinary least squares regression

Import a Dataset
We’ve seen how to import a dataset using a function from the pandas package:

plant_growth = pd.read_csv('ch03-py4r/data/plant_growth.csv')

Examine the Data
It’s always good practice to look at our data before we start working on it. In R we’d
use things like summary() and str(), or glimpse() if we had dplyr initialized. Let’s
see how that works in Python.

plant_growth.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype
---  ------  --------------  -----
 0   weight  30 non-null     float64
 1   group   30 non-null     object
dtypes: float64(1), object(1)
memory usage: 608.0+ bytes
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plant_growth.describe()

        weight
count 30.000000
 mean 5.073000
  std 0.701192
  min 3.590000
  25% 4.550000
  50% 5.155000
  75% 5.530000
  max 6.310000

plant_growth.head()

  weight group
0 4.17 ctrl
1 5.58 ctrl
2 5.18 ctrl
3 6.11 ctrl
4 4.50 ctrl

What the what?? This is the first time we’ve encountered this nomenclature, and
there’s that ever-present dot notation again! The functions info(), describe(), and
head() are methods of the object plant_growth. A method is a function that is called
by an object. As with other functions, we can also provide specific arguments,
although in these cases we’ll stick with the default.

Note in particular the output from the info() method. Here, we see for the first time
that indexing begins at 0 in Python, as is the case with many programming languages
—and why shouldn’t it!? This is an important aspect of Pythonic programming. We’ll
see the consequences of this later on when we get to indexing.

The output from .info() also tells us that we have a pd.DataFrame. We’ll explore dif‐
ferent object classes soon.

How about looking at the shape (i.e., dimensions) and column names of the
plant_growth object?

plant_growth.shape

(30, 2)

plant_growth.columns

Index(['weight', 'group'], dtype='object')

In this case, we are calling attributes of the object, so they don’t receive any brackets.
So here we see that any given object can call permissible methods and attributes,
according to its class. You’ll know this from R, when the class of an object allows it to
be used in specific functions for which there are methods available for it. Under the
hood, the same magic is happening. R is function-first, OOP-second. It’s there, but we
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don’t need to worry about it as much in functional programming. To give you an idea
of how this works in R, consider a built-in dataset, sunspots. It’s a ts class object (i.e.,
time series):

# in R
class(sunspots)
[1] "ts"
plot(sunspots)
# not shown

You can find the methods for the plot function using:

# in R
methods(plot)

There, you’ll see the plot.ts() method, which is what is actually called when you
provide a ts class object to the plot() function.

Finally, you may miss being able to actually see that dataset like we can with the RStu‐
dio view option. Not to worry! You can click on the table icon in the interactive
Python kernel and see everything in your environment. If you click on the data
frame, it will open up a view for you to examine it.

Data Structures and Descriptive Statistics
Alright, now that we’ve come to grips with methods and attributes, let’s take a look at
how you would generate some descriptive statistics. A pd.DataFrame is very similar
to an R data.frame or tbl. It’s a two-dimensional table where each column is a
Series, like how columns are vectors of the same length in R data frames. Just like a
pd.DataFrame itself, a Series also has methods and attributes. Recall that the group
column is categorical. By now, this command should make sense to you:

plant_growth['group'].value_counts()

trt2    10
trt1    10
ctrl    10
Name: group, dtype: int64

The [] will be familiar to you from R; they index according to the name of a column.
The . then takes this single column and calls a method, .value_counts(), which in
this case counts the number of observations for each value.

How about this:

np.mean(plant_growth['weight'])

np says we’re going to use a function from the NumPy package we imported earlier.
Inside that function, we provide numerical values, the weight Series of the
plant_growth data frame.
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How about some summary statistics. Can you guess what this method will do?

# summary statistics
plant_growth.groupby(['group']).describe()

Just like with dplyr’s group_by() function, the groupby() method will allow down‐
stream methods to be applied on each subset according to a categorical variable, in
this case the group Series. The describe() method will provide a suite of summary
statistics for each subset.

This version is more specific:

plant_growth.groupby(['group']).agg({'weight':['mean','std']})

You can probably guess that the .agg() method stands for aggregate. Aggregation
functions return a single value (typically), and in R we’d specify it using the
summarise() function.

The input to the .agg() method, {'weight':['mean','std']}, is a dictionary (class
dict). You can think of this as a key-value pair, defined here using {}:

{'weight':['mean','std']}

We could also have used the dict() function for the same purpose:

dict([('weight', ['mean','std'])])

Dictionaries are data storage objects in their own right, are part of standard vanilla
Python, and as we see here are used as arguments to input in methods and functions.
This is similar to how lists in R are used for both data storage and as a list of argu‐
ments in specific circumstances. Nonetheless, a dictionary is better thought of as an
associative array since indexing is only by key, and not number. I may go so far as to
say that a dictionary is even more like an environment in R, since that contains many
objects but no indexing, but that may be a bit of a stretch.

Let’s dig a bit deeper. The following commands produce the same output, but in dif‐
ferent formats!

# Produces Pandas Series
plant_growth.groupby('group')['weight'].mean()

# Produces Pandas data frame
plant_growth.groupby('group')[['weight']].mean()

Notice the [[]] versus []? It recalls a difference that you may have encountered in R
when working with data frames that are not tibbles.

Data Structures: Back to the Basics
We’ve already seen three common types of data storage objects in Python, pd.Data
Frame, pandas Series, and dict. Only dict is from vanilla Python, so before we
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move on, I want to look as some of the other basic structures: lists, tuples, and
NumPy arrays. I’m introducing these much later than you’d expect; that’s because I
wanted to begin with data frames, which are intuitive and frequently used. So let’s
make sure we have the basics covered before we wrap up:

First, like in R, you’ll see four key data types in Python:

Type Name Example

bool Binary True and False

int Integer numbers 7,9,2,-4

float Real numbers 3.14, 2.78, 6.45

str String All alphanumeric and special characters

Next, you’ll encounter lists, one-dimensional objects. Unlike vectors in R, each ele‐
ment can be a different object, for example, another one-dimensional list. Here are
two simple lists:

cities = ['Munich', 'Paris', 'Amsterdam']
dist = [584, 1054, 653]

Notice that the [] define a list. We actually already saw that when we defined the dict
earlier:

{'weight':['mean','std']}

So both [] and {} alone are valid in Python and behave differently than in R. But
remember, we did use [] earlier to index the data frame, which is very similar to R.

plant_growth['weight']

Finally, we have tuples, which are like lists, except they are immutable, i.e., unchange‐
able. They are defined by (), as such:

('Munich', 'Paris', 'Amsterdam')

A common use of tuples is when a function returns multiple values. As an example, 
the divmod() function returns the result of integer division and modulus of two
numbers:

>>>   divmod(10, 3)
(3, 1)

The result is a tuple, but we can unpack the tuple and assign each output to a separate
object:

int, mod = divmod(10, 3)

That’s really convenient when defining custom functions. The equivalent in R would
be to save the output to a list.
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Astute useRs may be familiar with the multiple assign operator %<-%, introduced by
the zeallot package and popularized by the Keras framework.

The last data structure I want to mention is the NumPy array. This is very similar to a
one-dimensional list, but allows for vectorization, among other things. For example:

# A list of distances
>>> dist
[584, 1054, 653]
# Some transformation function
>>> dist * 2
[584, 1054, 653, 584, 1054, 653]

That’s very different from what a useR would expect. If we were working on an
NumPy array, we’d be back in familiar territory:

# Make a numpy array
>>> dist_array = np.array(dist)
>>> dist_array * 2
array([1168, 2108, 1306])

Indexing and Logical Expressions
Now that we have a variety of objects, let’s look at how to index them. We already saw
that we can use [] and even [[]] as we see in R, but there are a couple of interesting
differences. Remember that indexing always begins at 0 in Python! Also, notice that
one of the most common operators in R, :, makes a reappearance in Python but in a
slightly different form. Here it’s [start:end]:

>>> dist_array
array([ 584, 1054,  653])
>>>  dist_array[:2]
array([ 584, 1054])
>>>  dist_array[1:]
array([1054,  653])

The : operator doesn’t need left- and right-hand sides. If one side is empty, the index
begins or proceeds to the end. The start is inclusive and the end, if specified, is exclu‐
sive. Thus :2 takes index 0 and 1, and 1: takes index 1 up to the last element, which is
unspecified and thus inclusive.

For two-dimensional data frames, we encounter the pandas .iloc, “index location”
and .loc “location” methods:

# Rows: 0th and 2nd
>>> plant_growth.iloc[[0,2]]
  weight group
0 4.17 ctrl
2 5.18 ctrl

# Rows: 0th to 5th, exclusive
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# Cols: 1st
>>> plant_growth.iloc[:5, 0]
0    4.17
1    5.58
2    5.18
3    6.11
4    4.50

For the .loc(), we can introduce logical expressions, i.e., combinations of relational
and logical operators to ask and combine True/False questions.

>>> plant_growth.loc[(plant_growth.weight <=  4)]
   weight group
13 3.59 trt1
15 3.83 trt1

For more detail on indexing and logical expressions, see the notes in the Appendix.

Plotting
Alright, let’s take a look at some data visualization of weight described by group. Since
R’s ggplot2 package will be recommended for elegant and flexible data visualization in
Part III, I’ve left out the plots for the following commands. Nonetheless, it’s useful to
see the seaborn approach. Here we have a box plot:

sns.boxplot(x='group', y='weight', data=plant_growth)
plt.show()
# not shown

Just the points:

sns.catplot(x="group", y="weight", data=plant_growth)
plt.show()

And just the means with their standard deviations:

sns.catplot(x="group", y="weight", data=plant_growth, kind="point")
plt.show()

Notice that I’m using the seaborn package (alias sns) for data visualizations and then
using the show() function from matplotlib to print the visualization to the screen.
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Inferential Statistics
In this dataset, we have a specific set up in that we have three groups and we’re inter‐
ested in two specific two-group comparisons. We can accomplish this by establishing
a linear model:

# fit a linear model
# specify model
model = ols("weight ~ group", plant_growth)

# fit model
results = model.fit()

We can get the coefficients of the model directly:

# extract coefficients
results.params.Intercept
results.params["group[T.trt1]"]
results.params["group[T.trt2]"]

Finally, let’s take a look at a summary of our model:

# Explore model results
results.summary()

Alright, let’s wrap this up by using a typical statistical test for this type of data: a one-
way ANOVA. Notice that we’re using our model, results, that we fitted previously:

# ANOVA
# compute anova
aov_table = sm.stats.anova_lm(results, typ=2)

# explore anova results
aov_table

If we want to do all pairwise comparisons, we can turn to Tukey’s honestly significant
differences (HSD) post hoc test:

from statsmodels.stats.multicomp import pairwise_tukeyhsd
print(pairwise_tukeyhsd(plant_growth['weight'], plant_growth['group']))

In this instance, we’re starting with the statsmodel library, taking the stats package and
the multicomp module therein, and extracting from that only the specific pair
wise_tukeyhsd() function to import. In the second line, we execute the function with
a continuous variable as the first argument and the grouping variable as the second 
argument.
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Final Thoughts
In R, there has been a convergence on common practices and workflows since circa
2016. In Python, there is a lot more diversity in how to get up and running right from
the word go. This diversity may seem daunting, but it’s just a reflection of Python’s
origin story and use cases in the real world.

If you’re a useR accustomed to the world of functional programming, wrapping your
head around OOP methods can also seem pretty daunting, but once you get over that
hurdle, you can start exploiting the power of Python where it truly shines, the topic of
Part III.
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PART III

Bilingualism II: The Modern Context

In this part you’ll get your hands dirty and get a tour of applications of both lan‐
guages in a modern context, in terms of the open source ecosystem and useful
workflows.

These are the two dimensions we need to cover to get a coherent view. By going
through both, you will obtain a clear picture when and where to use which language,
open source package, and workflow.

Chapter 4
In this chapter, we’ll go through how the variety of different data formats (i.e.,
image or text) are processed by different packages and which are the best ones.

Chapter 5
This chapter covers the most effective modern workflows (i.e., machine learning
and visualization) for productive work for both R and Python.





CHAPTER 4

Data Format Context

Boyan Angelov

In this chapter we’ll review tools in Python and R for importing and processing data
in a variety of formats. We’ll cover a selection of packages, compare and contrast
them, and highlight the properties that make them effective. At the end of this tour,
you’ll be able to select packages with confidence. Each section illustrates the tool’s
capabilities with a specific mini case study, based on tasks that a data scientist
encounters daily. If you’re transitioning your work from one language to another or
simply want to find out how to get started quickly using complete, well-maintained,
and context-specific packages, this chapter will guide you.

Before we dive in, remember that the open source ecosystem is constantly changing.
New developments, such as transformer models and explainable artificial intelligence
(XAI), seem to emerge every other week. These often aim at lowering the learning
curve and increasing developer productivity. This explosion of diversity also applies
to related packages, resulting in a nearly constant flow of new and (hopefully) better
tools. If you have a very specific problem, there’s probably a package already available
for you, so you don’t have to reinvent the wheel. Tool selection can be overwhelming,
but at the same time this variety of options can improve the quality and speed of your
data science work.

The package selection in this chapter can appear limited in view; hence, it is essential
to clarify our selection criteria. So what qualities should we look for in a good tool?
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1 For a more thorough explanation on this, have a look at RealPython.com’s guide.
2 This is commonly referred to as data lineage.

It should be open source.
There is a large number of valuable commercial tools available, but we firmly
believe that open source tools have a great advantage. They tend to be easier to
extend and understand what their inner workings are, and are more popular.

It should be feature-complete.
The package should include a comprehensive set of functions that help the user
do their fundamental work without resorting to other tools.

It should be well maintained.
One of the drawbacks of using open source software (OSS) is that sometimes
packages have a short life cycle, and their maintenance is abandoned (so-called
“abandonware”). We want to use packages that are actively worked on so we can
feel confident they are up-to-date.

Let’s begin with a definition. What is a data format? There are several answers avail‐
able. Possible candidates are data type, recording format, and file format. Data type is
related to data stored in databases or types in programming languages (for example
integer, float, or string). The recording format is how data is stored in a physical
medium, such as a CD or DVD. And finally, what we’re after, the file format, i.e., how
information is prepared for a computing purpose.

With that definition in hand, you might still wonder why I dedicate an entire chapter
to focus just on file formats. You have probably been exposed to them in another con‐
text, such as saving a PowerPoint slide deck with a .ppt or .pptx extension (and won‐
dering which one is better). The problem here goes much further beyond basic tool
compatibility. The way information is stored influences the complete downstream
data science process. For example, if our end goal is to perform advanced analytics
and the information is stored in a text format, we have to pay attention to factors
such as character encoding (a notorious problem, especially for Python).1 For such
data to be effectively processed, it also needs to go through several steps, such as toke‐
nization and stop word removal.2 Those same steps are not applicable to image data,
even though we may have the same end goal in mind, e.g., classification. In that case
other processing techniques are more suitable, such as resizing and scaling. These dif‐
ferences in data processing pipelines are shown in Figure 4-1. To summarize: the data
format is the most significant factor influencing what you can and cannot do with it.
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We now use the word pipeline for the first time in this context, so
let’s use the opportunity to define it. You have probably heard the
expression that “data is the new oil.” This expression goes beyond a
simple marketing strategy and represents a useful way to think
about data. There are surprisingly many parallels between how oil
and data are processed. You can imagine that the initial data that
the business collects is the rawest form—probably of limited use
initially. It then undergoes a sequence of steps, called data process‐
ing, before it’s used in some application (i.e., for training an ML
model or feeding a dashboard). In oil processing, this would be
called refinement and enrichment—making the data usable for a
business purpose. Pipelines transport the different oil types (raw,
refined) through the system to its final state. The same term can be
used in data science and engineering to describe the infrastructure
and technology required to process and deliver data.

Figure 4-1. Difference between common data format pipelines (the lighter shade indi‐
cates the shared steps between the workflows)

Infrastructure and performance also need to be taken into consideration when work‐
ing with a specific data format. For example, with image data, you’ll need more stor‐
age availability. For time-series data you might need to use a particular database, such
as InfluxDB. And finally, in terms of performance, image classification is often solved
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3 Who else didn’t learn what if __name__ == "__main__" does in Python?

using deep learning methods based on convolutional neural networks (CNNs), which
may require a graphics processing unit (GPU). Without it, model training can be very
slow and become a bottleneck both for your development work and a potential pro‐
duction deployment.

Now that we have covered the reasons to carefully consider which packages to use,
we’ll have a look at the possible data formats. This overview is presented in Table 4-1
(note that those tools are mainly designed for small- to medium-size datasets).
Admittedly, we are just scratching the surface on what’s out there, and there are a few
notable omissions (such as audio and video). Here, we’ll focus on the most widely
used formats.

Table 4-1. An overview of data formats and popular Python and R packages used to process
data stored in them

Data type Python package R package
Tabular pandas readr, rio

Image open-cv, scikit-image, PIL magickr, imager, EBImage

Text nltk, spaCy tidytext, stringr

Time series prophet, sktime prophet, ts, zoo

Spatial gdal, geopandas, pysal rgdal, sp, sf, raster

This table is by no means exhaustive, and we are certain new tools will appear soon,
but these are the workhorses fulfilling our selection criteria. Let’s get them to work in
the following sections, and see which ones are the best for the job!

External Versus Base Packages
In Chapter 2 and Chapter 3, we introduced packages very early in the learning pro‐
cess. In Python we used pandas right at the outset and transitioned to the Tidyverse
in R relatively quickly. This allowed us to be productive much faster than if we went
down the rabbit holes of archaic language features that you’re unlikely to need as a
beginner.3 A programming language’s utility is defined by the availability and quality
of its third-party packages, as opposed to the core features of the language itself.

This is not to say that there aren’t a lot of things that you can accomplish with just
base R (as you’ll see in some of the upcoming examples), but taking advantage of the
open source ecosystem is a fundamental skill to increase your productivity and avoid
reinventing the wheel.
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4 One table from the data, stored in a single file.

Go Back and Learn the Basics
There is a danger in overusing third-party packages, and you have to be aware of
when the right time to go back to the basics is. Otherwise you might fall victim to a
false sense of security and become reliant on the training wheels provided by tools
such as pandas. This might lead to difficulties when dealing with more specific real-
world challenges.

Let’s now see how this package versus base language concept plays out in practice by
going into detail with a topic we’re already familiar with: tabular data.4 There are at
least two ways to do this in Python. First, using pandas:

import pandas as pd

data = pd.read_csv(“dataset.csv”)

Second, with the built-in csv module:

import csv

with open(“dataset.csv”, “r”) as file: 
 reader = csv.reader(file, delimiter=“,”)
for row in reader: 
 print(row)

Note how you need to specify the file mode, in this case "r" (standing for “read”).
This is to make sure the file is not overwritten by accident, hinting at a more
general-purpose oriented language.

Using a loop to read a file might seem strange to a beginner, but it makes the pro‐
cess explicit.

This example tells us that pd.read_csv() in pandas provides a more concise, conve‐
nient, and intuitive way to import data. It is also less explicit than vanilla Python and
not essential. pd.read_csv() is, in essence, a convenience wrapper of existing func‐
tionality—good for us!

Here we see that packages serve two functions. First, as we have come to expect, they
provide new functionality. Second, they are also convenience wrappers for existing
standard functions, which make our lives easier.
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5 Not to forget readr, which was discussed in Chapter 2.
6 We did mention that statisticians are very literal, right?

This is brilliantly demonstrated in R’s rio package.5 rio stands for “R input/output,”
and it does just what it says.6 Here, the single function import() uses the file’s file‐
name extension to select the best function in a collection of packages for importing.
This works in Excel, SPSS, stata, SAS, and many other common formats.

Another R Tidyverse package called vroom allows for fast import of tabular data and
can read an entire directory of files in one command, with the use of map() functions
or for loops.

Finally, the data.table package, which is often neglected at the expense of promoting
the Tidyverse, provides the exceptional fread(), which can import very large files at
a fraction of what base R or readr offer.

The usefulness of learning how to use third-party packages becomes more apparent
when we try to perform more complex tasks, as we’ll see next when processing other
data formats.

Data Science from Scratch
Writing software from scratch is a great way to understand how things work under
the hood. It’s a recommended step in learning, especially after getting used to the
tools at higher abstraction levels (such as scikit-learn). Excellent reading material on
this topic is provided in Joel Grus’s book Data Science from Scratch (O’Reilly, 2019).

Now that we can appreciate the advantages of packages, we’ll demonstrate some of
their capabilities. For this we’ll work on several different real-world use cases, listed in
Table 4-2. We won’t focus on minute implementation details, but instead cover the
elements that expose their benefits (and shortcomings) for the tasks at hand. Since
the focus in this chapter is on data formats, and Chapter 5 is all about workflows, all
these case studies are about data processing.

For pedagogic purposes we have omitted parts of the code. If you’d
like to follow along, executable code is available in the book’s
repository.
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7 This consistency is a common thread in the chapters in Part III and is addressed additionally in Chapter 5.
8 Remember—garbage in, garbage out.
9 Using code to go through the content of a web page, download and store it in a machine-readable format.

Table 4-2. An overview of the different use cases

Data format Use case
image Swimming pool and car detection

text Amazon product reviews processing

time series Daily Australian temperatures

spatial Loxodonta africana species distribution data

Further information on how to download and process these data is available in the
official repository for the book.

Image Data
Images pose a unique set of challenges for data scientists. We’ll demonstrate the opti‐
mal methodology by covering the challenge of aerial image processing—a domain of
growing importance in agriculture, biodiversity conservation, urban planning, and
climate change research. Our mini use case utilizes data from Kaggle collected to help
the detection of swimming pools and cars. For more information on the dataset, you
can use the URL in Table 4-2.

As we mentioned at the beginning of the chapter, downstream purpose influences
data processing heavily. Since aerial data is often used to train machine learning algo‐
rithms, our focus will be on preparatory tasks.

The OpenCV package is one of the most common ways to work with image data in
Python. It contains all the necessary tools for image loading, manipulation, and stor‐
age. The “CV” in the name stands for computer vision—the field of machine learning
that focuses on image data. Another handy tool that we’ll use is scikit-image. As its
name suggests, it’s very much related to scikit-learn.7

Here are the steps of our task (refer to Table 4-2):

1. Resize the image to a specific size.
2. Convert the image to black and white.
3. Augment the data by rotating the image.

For an ML algorithm to learn successfully from data, the input has to be cleaned (data
munging), standardized (scaling), and filtered (feature engineering).8 You can
imagine gathering a dataset of images (e.g., by scraping data from Google Images).9
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10 Obtaining more data can be expensive, or even impossible in some cases.
11 If you want to learn more on data augmentation of images, have a look at this tutorial.

 They will differ in some way or another—such as size and/or color. Steps 1 and 2 in
our task list help us deal with that. Step 3 is handy for ML applications. The perfor‐
mance (i.e., classification accuracy, or area under the curve [AUC]) of ML algorithms
depends mostly on the amount of training data, which is often in little supply. To get
around this, without resorting to obtaining more data,10 data scientists have discov‐
ered that playing around with the data already available, such as rotating and crop‐
ping, can introduce new data points. Those can then be used to train the model again
and improve performance. This process is formally known as data augmentation.11

Enough talk—let’s import the data! Check the complete code at the book’s repository
if you want to follow along. The results are in Figure 4-2.

import cv2 
single_image = cv2.imread("img_01.jpg")

plt.imshow(single_image)
plt.show()

Using cv2 might seem confusing since the package is named OpenCV. cv2 is
used as a shorthand name. The same naming pattern is used for scikit-image,
where the import statement is shortened to skimage.

Figure 4-2. Raw image plot in Python with matplotlib
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So in what object type did cv2 store the data? We can check with type:

print(type(single_image))
numpy.ndarray

Here we can observe an important feature that already provides advantages to using
Python for CV tasks as opposed to R. The image is directly stored as a NumPy multi‐
dimensional array (nd stands for n-dimensions), making it accessible to a variety of
other tools available in the wider Python ecosystem. Because this is built on the
PyData stack, it’s well supported. Is this true for R? Let’s have a look at the magick
package:

library(magick)
single_image <- image_read('img_01.jpg')
class(single_image)
[1] "magick-image"

The magick-image class is only accessible to functions from the magick package, or
other closely related tools, but not the powerful base R methods (such as the ones
shown in Chapter 2, with the notable exception of plot()). The differences in
approaches of various open source packages supporting each other is illustrated in
Figure 4-3, and is a common thread throughout the examples in this chapter.

There is at least one exception to this rule—the EBImage package, a
part of BioConductor. By using it you can get access to the image
in its raw array form, and then use other tools on top of that. The
drawback here is that it’s part of a domain-specific package, and it
might not be easy to see how it works in a standard CV pipeline.

Note that in the previous step (where we loaded the raw image in Python), we also
used one of the most popular plotting tools, matplotlib (data visualization is covered
in Chapter 5), so we again took advantage of this better design pattern.
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Figure 4-3. The two types of package design hierarchies as they are used during a data
life cycle (bottom to top)

Now that we know that the image data is stored as a NumPy ndarray, we can use
NumPy’s methods. What’s the size of the image? For this we can try the .shape
method of ndarray:

print(single_image.shape)
224 224 3

It worked indeed! The first two output values correspond to the image height and
width respectively, and the third one to the number of channels in the image—three
in this case ((r)ed, (g)reen, and (b)lue). Now let’s continue and deliver on the first
standardization step—image resizing. Here we’ll use cv2 for the first time:

single_image = cv2.resize(single_image,(150, 150))
print(single_image.shape)
(150, 150, 3)

If you gain experience working with such fundamental tools in
both languages, you’ll be able to test your ideas quickly, even
without knowing whether those methods exist. If the tools you use
are designed well (as in the better design in Figure 4-3), often they
will work as expected!

Perfect, it worked like a charm! The next step is to convert the image to black and
white. For this, we’ll also use cv2:

gray_image = cv2.cvtColor(single_image, cv2.COLOR_RGB2GRAY)
print(gray_image.shape)
(150, 150)
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The colors are greenish and not gray. This default option chooses a color scheme that
makes the contrast more easily discernible for a human eye than black and white.
When you look at the shape of the NumPy ndarray, you can see that the channel
number has disappeared—there is just one now. Now let’s complete our task, do a
simple data augmentation step, and flip the image horizontally. Here we’re again tak‐
ing advantage that the data is stored as a NumPy array. We’ll use a function directly
from NumPy, without relying on the other CV libraries (OpenCV or scikit-image):

flipped_image = np.fliplr(gray_image)

The results are shown in Figure 4-4.

Figure 4-4. Plot of an image flipped by using NumPy functions

We can use scikit-image for further image manipulation tasks such as rotation, and
even this different package will work as expected on our data format:

from skimage import transform
rotated_image = transform.rotate(single_image, angle=45)

The data standardization and augmentation steps we went through illustrate how the
less complex package design (Figure 4-3) makes us more productive. We can drive
the point home by showing a negative example for the third step, this time in R. For
that, we’ll have to rely on the adimpro package:

library(adimpro)
rotate.image(single_image, angle = 90, compress=NULL)

Whenever we load yet another package, we are decreasing the quality, readability, and
reusability of our code. This issue is primarily due to possible unknown bugs, a
steeper learning curve, or a potential lack of consistent and thorough documentation
for that third-party package. A quick check on the status of adimpro on CRAN
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12 At the time of writing.
13 Not to be confused with the conference of the same name, the PyData stack refers to NumPy, SciPy, pandas,

IPython, and matplotlib.
14 The R community has also rallied to the call and improved the tooling in recent times, but it still arguably lags

behind its Python counterparts.

 reveals that the last time it was updated was in November 2019.12 This is why using
tools such as OpenCV, which work on image data by taking advantage of the PyData
stack,13 is preferred.

A less complex, modular, and abstract enough package design goes a long way to
make data scientists productive and happy in using their tools. They are then free to
focus on actual work and not dealing with complex documentation or a multitude of
abandonware packages. These considerations make Python the clear winner in
importing and processing image data, but is this the case for the other formats?

Text Data
The analysis of text data is often used interchangeably with the term natural language
processing (NLP). This, in turn, is a subfield of ML. Hence it’s not surprising to see
that Python-based tools also dominate it. The inherently compute-intensive nature of
working with text data is one good reason why that’s the case. Another one is that 
dealing with larger datasets can be a more significant challenge in R than in Python
(this topic is covered further in Chapter 5).14 And it is a big data problem. The
amount of text data has proliferated in recent years with the rise of services on the
internet and social media giants such as Twitter and Facebook. Such organizations
have also invested heavily in the technology and related open source tools, due to the
fact that a large chunk of data available to them is in text format.

Similarly to the image data case, we’ll start by designing a standard NLP task. It
should contain the most fundamental elements of an NLP pipeline. For a dataset, we
selected texts from the Amazon product reviews dataset (Table 4-2), and we have to
prepare it for an advanced analytics use case, such as text classification, sentiment
analysis, or topic modeling. The steps needed for completion are the following:

1. Tokenize the data.
2. Remove stop words.
3. Tag the parts of speech (PoS).

We’ll also go through more advanced methods (such as word embeddings) in spaCy
to demonstrate what the Python packages are capable of and, at the same time, pro‐
vide a few R examples for comparison.
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15 To learn more about NLTK, have a look at Natural Language Processing with Python by Steven Bird, Ewan
Klein, and Edward Loper (O’Reilly), one of the most accessible books on working with text data.

16 Data type coercion is the conversion of one data type to another.

So what are the most common tools in Python? The most popular one is often
referred to as the Swiss Army knife of NLP—the Natural Language Toolkit (NLTK).15

It contains a good selection of tools covering the whole pipeline. It also has excellent
documentation and a relatively low learning curve for its API.

As a data scientist, one of the first steps in a project is to look at the raw data. Here’s
one example review, along with its data type:

example_review = reviews["reviewText"].sample()
print(example_review)
print(type(example_review))

I just recently purchased her ''Paint The Sky With Stars''
 CD and was so impressed that I bought 3 of her previously
 released CD's and plan to buy all her music.  She is
 truely talented and her music is very unique with a
 combination of modern classical and pop with a hint of
 an Angelic tone. I still recommend you buy this CD. Anybody
  who has an appreciation for music will certainly enjoy her music.

str

This here is important—the data is stored in a fundamental data type in Python—str

(string). Similar to the image data being stored as a multidimensional NumPy array,
many other tools can have access to it. For example, suppose we were to use a tool
that efficiently searches and replaces parts of a string, such as flashtext. In that case,
we’d be able to use it here without formatting issues and the need to coerce the data
type.16

Now we can take the first step in our mini case study—tokenization. It will split the
reviews into components, such as words or sentences:

sentences = nltk.sent_tokenize(example_review)
print(sentences)

["I just recently purchased her ''Paint The Sky With Stars''
CD and was so impressed that I bought 3 of her
previously released CD's and plan to buy all her music.",
 'She is truely talented and her music is very unique with
  a combination of modern classical and pop with a hint of an Angelic tone.',
 'I still recommend you buy this CD.',
 'Anybody who has an appreciation for music will certainly enjoy her music.']

Easy enough! For illustration purposes, would it be that hard to attempt this relatively
simple task in R, with some functions from tidytext?
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17 This is a common step in NLP. Some examples of stop words are “the,” “a,” and “this.” These need to be
removed since they rarely offer useful information for ML algorithms.

18 The process of labeling words with the PoS they belong to.

tidy_reviews <- amazon_reviews %>%
  unnest_tokens(word, reviewText) %>%
  mutate(word = lemmatize_strings(word, dictionary = lexicon::hash_lemmas))

This is one of the most well-documented methods to use. One issue with this is that it
relies heavily on the “tidy data” concept, and also on the pipeline chaining concept
from dplyr (we covered both in Chapter 2). These concepts are specific to R, and to
use tidytext successfully, you would have to learn them first, instead of directly jump‐
ing to processing your data. The second issue is the output of this procedure—a new
data.frame containing the data in a processed column. Although this might be what
we need in the end, this skips a few intermediate steps and is several layers of abstrac‐
tion higher than what we did with nltk. Lowering this abstraction and working in a
more modular fashion (such as processing a single text field first) adheres to software
development best practices, such as DRY (“Do not repeat yourself ”) and separation
of concerns.

The second step of our small NLP data processing pipeline is removing stop words:17

tidy_reviews <- tidy_reviews %>%
  anti_join(stop_words)

This code suffers from the same issues, along with a new confusing function—
anti_join. Let’s compare it to the simple list comprehension (more information on
this in Chapter 3) step in nltk:

english_stop_words = set(stopwords.words("english"))
cleaned_words = [word for word in words if word not in english_stop_words]

english_stop_words is just a list, and then the only thing we do is loop through
every word in another list (words) and remove it if it’s present in both. This is easier
to understand. There’s no relying on advanced concepts or functions that are not
directly related. This code is also at the right level of abstraction. Small code chunks
can be used more flexibly as parts of a larger text processing pipeline function. A sim‐
ilar meta processing function in R can become bloated—slow to execute and hard to 
read.

While nltk allows for such fundamental tasks, we’ll now have a look at a more
advanced package—spaCy. We’ll use this for the third and final step in our case study
—part of speech (PoS) tagging:18

import spacy

nlp = spacy.load("en_core_web_sm") 
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19 Converting text into numbers for ingestion by an ML algorithm.
20 Such as trying to create custom embeddings. Check the RStudio blog for more information.
21 You can read more about that on the RStudio blog.

doc = nlp(example_review) 
print(type(doc))

spacy.tokens.doc.Doc

Here we are loading all the advanced functionality we need through one
function.

We take one example review and feed it to a spaCy model, resulting in the
spacy.tokens.doc.Doc type, not a str. This object can then be used for all kinds
of other operations:

for token in doc:
    print(token.text, token.pos_)

The data is already tokenized on loading. Not only that—all the PoS tags are marked
already!

The data processing steps that we covered are relatively basic. How about some newer
and more advanced NLP methods? We can take word embeddings, for example. This
is one of the more advanced text vectorization methods,19 where each vector repre‐
sents the meaning of a word based on its context. For that, we can already use the
same nlp object from the spaCy code:

for token in doc:
    print(token.text, token.has_vector, token.vector_norm, token.is_oov)

for token in doc:...
I True 21.885008 True
just True 22.404057 True
recently True 23.668447 True
purchased True 23.86188 True
her True 21.763712 True
' True 18.825636 True

It’s a welcome surprise to see that those abilities are already built-in into one of the
most popular Python NLP packages. On this level of NLP methods, we can see that
there’s almost no alternative available in R (or even other languages, for that matter).
Many analogous solutions in R rely on wrapper code around a Python backend
(which can defeat the purpose of using the R language).20 This pattern is often seen in
the book, especially in Chapter 5. The same is also true for some other advanced
methods such as transformer models.21
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For Round 2, Python is again the winner. The capabilities of nltk, spaCy, and other
associated packages make it an excellent choice for NLP work!

Time Series Data
The time-series format is used to store any data with an associated temporal dimen‐
sion. It could be as simple as shampoo sales from a local grocery store, with a time‐
stamp, or millions of data points from a sensor network measuring humidity in an
agricultural field.

There are some exceptions to the domination of R for the analysis
of time-series data. The recent developments in deep learning
methods, in particular, long short-term memory (LSTM) networks
have proven to be very successful for time-series prediction. As is
the case for other deep learning methods (more on this in Chap‐
ter 5), this is an area better supported by Python tools.

Base R
There are quite a few different packages that useRs can employ to analyze time-series
data, including xts and zoo, but we’ll be focusing on base R functions as a start. After
this, we’ll have a look at one more modern package to illustrate more advanced func‐
tionality: Facebook’s Prophet.

Weather data is both widely available and relatively easy to interpret, so for our case
study, we’ll analyze the daily minimum temperature in Australia (Table 4-2). To do a
time-series analysis, we need to go through the following steps:

1. Load the data into an appropriate format.
2. Plot the data.
3. Remove noise and seasonal effects and extract trend.

Then we would be able to proceed with more advanced analysis. Imagine we have
loaded the data from a .csv file into a data.frame object in R. Nothing out of the ordi‐
nary here. Still, differently from most Python packages, R requires data coercion into
a specific object type. In this case, we need to transform the data.frame into a ts
(which stands for time series).

df_ts <- ts(ts_data_raw$Temp, start=c(1981, 01, 01),
            end=c(1990, 12, 31), frequency=365)
class(df_ts)

So why would we prefer that to pandas? Well, even after you manage to convert the
raw data into a time series pd.DataFrame, you’ll encounter a new concept—data
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frame indexing (see Figure 4-5). To be efficient in data munging, you’ll need to
understand how this works first!

Figure 4-5. The time series index in pandas

This indexing concept can be confusing, so let’s now look at what the alternative is in 
R and whether that’s better. With the df_ts time series object, there are already a few
useful things we can do. It’s also a good starting point when you are working with
more advanced time series packages in R because the coercion of a ts object into xts
or zoo should throw no errors (this once again is an example of the good object
design we covered in Figure 4-3). The first thing you can try to do is plot the object,
which often yields good results in R:

plot(df_ts)

Calling the plot function does not simply use a standard function
that can plot all kinds of different objects in R (this is what you
would expect). It calls a particular method that is associated with
the data object (more on the difference between functions and
methods is available in Chapter 2). A lot of complexity is hidden
behind this simple function call!

The results from plot(df_ts) in Figure 4-6 are already useful. The dates on the x-
axis are recognized, and a line plot is chosen instead of the default points plot.

Figure 4-6. Plot of a time-series (ts) object in base R
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The most prevalent issue in analyzing time-series data (and most ML data, for that
matter) is dealing with noise. The difference between this data format and others is
that there are a few different noise sources, and different patterns can be cleaned. This
is achieved by a technique called decomposition, for which we have the built-in and
well-named function decompose:

decomposed_ts <- decompose(df_ts)
plot(decomposed_ts)

The results can be seen in Figure 4-7.

Figure 4-7. Plot of decomposed time-series in base R

We can see what the random noise is and also what is a seasonal and overall pattern.
We achieved all this with just one function call in base R! In Python, we would need
to use the statsmodels package to achieve the same.

Prophet
For analyzing time-series data, we also have another exciting package example. It’s
simultaneously developed for both R and Python (similar to the lime explainable ML
tool): Facebook Prophet. This example can help us compare the differences in API
design. Prophet is a package whose main strength lies in the flexibility for a domain
user to adjust to their particular need, ease of use of the API, and focus on production
readiness. These factors make it a good choice for prototyping time series work and
using it in a data product. Let’s have a look; our data is stored as a pd.DataFrame in
df:
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from fbprophet import Prophet

m = Prophet()
m.fit(df) 

future = m.make_future_dataframe(periods=365) 
future.tail()

Here we see the same fit API pattern again, borrowed from scikit-learn.

This step creates a new empty pd.DataFrame that stores our predictions later.

library(prophet)

m <- prophet(df)

future <- make_future_dataframe(m, periods = 365)
tail(future)

Both are simple enough and contain the same number of steps—this is an excellent
example of a consistent API design (more on this in Chapter 5).

It’s an interesting and helpful idea to offer a consistent user experi‐
ence across languages, but we do not predict it’ll be widely imple‐
mented. Few organizations possess the resources to do such work,
which can be limiting since compromises have to be made in soft‐
ware design choices.

At this point, you can appreciate that knowing both languages would give you a sig‐
nificant advantage in daily work. If you were exposed only to the Python package
ecosystem, you would probably try to find similar tools for analyzing time series and
miss out on the incredible opportunities that base R and related R packages provide.

Spatial Data
The analysis of spatial data is one of the most promising areas in modern machine
learning and has a rich history. New tools have been developed in recent years, but R
has had the upper hand for a long time, despite some recent Python advances. As in
the previous sections, we’ll look at a practical example to see the packages in action.

There are several formats of spatial data available. In this subsec‐
tion, we are focusing on the analysis of raster data. For other for‐
mats there are some interesting tools available in Python, such as
GeoPandas, but this is out of scope for this chapter.
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22 Data representing cells, where the cell value represents some information.
23 Environmental features that have been determined by ecologists to be highly predictive of species distribu‐

tions, i.e., humidity and temperature.

Our task is to process occurrence (location-tagged observations of the animal in the
wild) and environmental data for Loxodonta africana (African elephant) to make it
suitable for spatial predictions. Such data processing is typical in species distribution
modeling (SDM), where the predictions are used to construct habitat suitability maps
used for conservation. This case study is more advanced than the previous ones, and
a lot of the steps hide some complexity where the packages are doing the heavy lift‐
ing. The steps are as follows:

1. Obtain environmental raster data.
2. Cut the raster to fit the area of interest.
3. Deal with spatial autocorrelation with sampling methods.

To solve this problem as a first step, we need to process raster data.22 This is, in a way,
very similar to standard image data, but still different in processing steps. For this R
has the excellent raster package available (the alternative is Python’s gdal and R’s
rgdal, which in our opinion, are trickier to use).

library(raster)
climate_variables <- getData(name = "worldclim", var = "bio", res = 10)

raster allows us to download most of the common useful spatial environmental data‐
sets, including the bioclimactic data:23

e <- extent(xmin, xmax, ymin, ymax)
coords_absence <- dismo::randomPoints(climate_variables, 10000, ext = e)
points_absence <- sp::SpatialPoints(coords_absence,
                                    proj4string = climate_variables@crs)
env_absence <- raster::extract(climate_variables, points_absence)

Here we use the handy extent function to crop (cut) the raster data—we are only
interested in a subsection of all those environmental layers surrounding the occur‐
rence data. Here we use the longitude and latitude coordinates to draw this rectangle.
As a next step, to have a classification problem, we are randomly sampling data points
from the raster data (those are called pseudo absences). You could imagine that those
are the 0s in our classification task, and the occurrences (observations) are the 1s—
the target variable. We then convert the pseudo-absences to SpatialPoints, and
finally extract the climate data for them as well. In the SpatialPoints function, you
can also see how we specify the geographic projection system, one of the fundamental
concepts when analyzing spatial data.
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One of the most common issues when working in ML is correlations within the data.
The fundamental assumption for a correct dataset is that the individual observations
in the data are independent of each other to get accurate statistical results. This issue
is always present in spatial data due to its very nature. This issue is called spatial auto‐
correlation. There are several packages available for sampling from the data to miti‐
gate this risk. One such package is ENMeval:

library(ENMeval)
check1 <- get.checkerboard1(occs, envs, bg, aggregation.factor=5)

The get.checkerboard1 function samples the data in an evenly distributed manner,
similar to taking equal points from each square from a black-and-white chessboard.
We can then take this resampled data and successfully train an ML model without
worrying about spatial autocorrelation. As a final step, we can take those predictions
and create the habitat suitability map, shown in Figure 4-8.

raster_prediction <- predict(predictors, model)
plot(raster_prediction)

Figure 4-8. Plot of a raster object prediction in R, resulting in a habitat suitability map

When you’re working with spatial raster data, the better package design is provided
by R. The fundamental tools such as raster provide a consistent foundation for more
advanced application-specific ones such as ENMeval and dismo, without the need to
worry about complex transformation or error-prone type coercion.

Final Thoughts
In this chapter we went through the different common data formats and the best
packages to process them so they are ready for advanced tasks. In each case study, we
demonstrated a good package design and how that can make a data scientist more
productive. We have seen that for more ML-focused tasks, such as CV and NLP,
Python is providing the better user experience and lower learning curve. In contrast,
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for more time series prediction and spatial analysis, R has the upper hand. Those
selection choices are shown in Figure 4-9.

Figure 4-9. Decision tree for package selection

What the best tools have in common is the better package design (Figure 4-3). You
should always use the optimal tool for the job and pay attention to the complexity,
documentation, and performance of the tools you use!
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CHAPTER 5

Workflow Context

Boyan Angelov

A common source of frustration for data scientists is discussing their work with col‐
leagues from adjacent fields. Let’s take the example of someone who has been work‐
ing primarily in developing ML models, having a chat about their work with a
colleague from the business intelligence (BI) team, which is more focused on report‐
ing. More often than not, such a discussion can make both parties uncomfortable due
to a perceived lack of knowledge about each other’s work domain (and associated
workflows)—despite sharing the same job title. The ML person might wonder what
D3.js is, the grammar of graphics, and all that. On the other hand, the BI data scien‐
tist might feel insecure about not knowing how to build a deployable API. The feel‐
ings that might arise from such a situation have been termed impostor syndrome,
where doubts about your competency arise. Such a situation is a by-product of the
sheer volume of possible applications of data science. A single person is rarely famil‐
iar to the same extent with more than several subfields. Flexibility is still often
required in this fast-evolving field.

This complexity sets the foundation for the workflow focus in this chapter. We’ll
cover the primary data science workflows and how the languages’ different ecosys‐
tems support them. Much like Chapter 4, at the end of this chapter, you’ll have every‐
thing needed for making educated decisions regarding your workflows.
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Defining Workflows
Let’s take a step back and define a workflow:

A workflow is a complete collection of tools and frameworks to perform all tasks
required from a specific job function.

For this example, let’s say you’re an ML engineer. Your daily tasks might include tools
to obtain data, process it, train a model on it, and deploying frameworks. Those, col‐
lectively, represent the ML engineer workflow. An overview of the data workflows for
this and other titles and their supporting tools is presented in Table 5-1.

Table 5-1. Common data science workflows and their enabling tools.

Method Python package R package
Data munginga pandas dplyr

EDA matplotlib, seaborn, pandas ggplot2, base R, Leaflet

Machine learning scikit-learn mlr, tidymodels, caret

Deep learning Keras, TensorFlow, PyTorch Keras, TensorFlow, torch

Data engineeringb Flask, BentoML, FastAPI plumber

Reporting Jupyter, Streamlit R Markdown, Shiny
a Data munging (or wrangling) is such a fundamental topic in data science that it was already covered in Chapter 2.
b There is much more to data engineering than model deployment, but we decided to focus on this subset to illustrate
Python’s ability.

We omitted some areas in the hope that the listed ones are the most common and
critical. Those selected workflows are related to each other, as presented in Figure 5-1.
This diagram borrows heavily from the CRISP-DM framework, which shows all sig‐
nificant steps in a typical data science project. Each of the diagram’s steps has a sepa‐
rate workflow associated with it, generally assigned to an individual or a team.

Figure 5-1. Metaworkflow in data science and engineering
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Now that we have defined a workflow, what are the defining properties of a “good”
one? We can compile a checklist with three main factors to consider:

1. It’s well established. It’s widely adopted by the community (also across different
application domains, such as computer vision or natural language processing).

2. It’s supported by a well-maintained, open source ecosystem and community. A
workflow that relies heavily on closed-source and commercial applications (such
as MATLAB) is not considered acceptable.

3. It’s suitable for overlapping job functions. The best workflows are similar to Lego
bricks—their modular design and extensibility can support diverse tech stacks.

With the big picture and definitions out of the way, let’s dive deeper into the different
workflows and how they are supported by R and Python!

Exploratory Data Analysis
Looking at numbers is hard. Looking at rows of data containing millions upon mil‐
lions of them is even more challenging. Any person dealing with data faces this chal‐
lenge daily. This need has led to considerable developments in data visualization
(DV) tools. A recent trend in the area is the explosion of self-serving analytics tools,
such as Tableau, Alteryx, and Microsoft Power BI. These are very useful, but the open
source world has many alternatives available, often rivaling or even exceeding their
commercial counterparts’ capabilities (except, in some cases, ease of use). Such tools
collectively represent the EDA workflow.

When to Use a GUI for EDA
Many data scientists frown at the notion of using a GUI for their daily work. They
would much rather prefer the flexibility and utility of command-line tools instead.
Nevertheless, one area where using a GUI makes more sense (for productivity rea‐
sons) is EDA. It can be quite time-consuming to generate multiple plots, especially at
the beginning of a data science project. Usually, one would need to create tens, if not
hundreds of them. Imagine writing the code for each one (even if you improve your
code’s organization by refactoring into functions). For some larger datasets, it’s some‐
times much easier to use some GUI, such as AWS QuickSight or Google Data Studio.
By using a GUI, the data scientist can quickly generate a lot of plots first and only
then write the code for the ones that make the cut after screening. There are a few 
good open source GUI tools, for example Orange.
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1 It’s a bit unfair to present matplotlib as the only viable alternative from Python. The seaborn package also
enables the creation of beautiful plots quickly but still lags behind the ggplot features. It’s worth mentioning
that newer versions of pandas have plotting capabilities as well, so we should watch this space.

2 There have been attempts to re-create this package in Python, such as ggplot, but they have not caught on in
the community so far.

3 He wrote many other packages, and in some ways almost single-handedly changed the way people use R in a
modern context. Have a look at Chapter 2 and The Grammar of Graphics by Leland Wilkinson et. al.
(Springer) for more information on his packages.

EDA is a fundamental step at the beginning of the analysis of any data source. It is
typically performed directly after data loading, at the stage where there’s a significant
need for business understanding. This explains why it’s an essential step. You are 
probably familiar with the garbage in, garbage out paradigm—the quality of any data
project depends on the quality of the input data and the domain knowledge behind it.
EDA enables the success of the downstream workflows (such as ML), ensuring both
the data and the assumptions behind it are correct and of sufficient quality.

In EDA, R has far better tools available than Python. As we discussed in Chapter 1
and Chapter 2, R is a language made by statisticians and for statisticians (remember
FUBU from Chapter 2?), and data visualization (plotting) has been of great impor‐
tance in statistics for decades. Python has made some forward strides in recent years
but is still seen as lagging (you need just to look at example matplotlib plot to realize
this fact package also enables the creation of beautiful plots quickly but still lags
behind the ggplot features).1 Enough praise for R; let’s have a look at why it’s great for
EDA!

Static Visualizations
You should already be acquainted with base R’s powers in terms of DV from Chap‐
ter 4, especially regarding time series plotting. Here we’ll take a step further and dis‐
cuss one of the most famous R packages—ggplot2. It’s one of the main reasons why
Pythonistas want to switch to R.2 What makes ggplot2 so successful in EDA work is
that it’s based on a well thought-through methodology—the grammar of graphics,
which was developed by L. Wilkinson. The ggplot2 package was developed by Hadley
Wickham.3

What is the grammar of graphics? The original paper behind it is titled “A Layered
Grammar of Graphics,” and the word “layered” holds the key. Everything you see on a
plot contributes to a larger stack or system. For example, the axes and grids form a
separate layer compared to the lines, bars, and points. Those latter elements consti‐
tute the data layer. The complete stack of layers forms the result—a complete ggplot.
Such a modular design pattern allows for great flexibility and provides a new way of
thinking about data visualization. The logic behind grammar of graphics is illustrated
in Figure 5-2.
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4 More information on the dataset is available in the R Package Documentation.
5 Did you know that his real name is Jabba Desilijic Tiure?

Figure 5-2. The layered grammar of graphics

To illustrate the different procedures for a regular EDA workflow, we’ll use the star
wars dataset (available from the dplyr package).4 This dataset contains information
on characters in the Star Wars movies, such as their gender, height, and species. Let’s
have a look!

library(ggplot2)
library(dplyr)

data("starwars") 

This will make the dataset visible in your RStudio environment, but it’s not
strictly necessary.

As a first step, let’s do a basic plot:

ggplot(starwars, aes(hair_color)) +
  geom_bar()

This plots the counts of the hair color variable. Here, we see a familiar operator, +,
used unconventionally. We use + in ggplot2 to add layers on top of each other in
ggplot2. Let’s build on this with a more involved case. Note that we omitted a filtering
step from the code here (there’s an outlier—Jabba the Hutt): 5

ggplot(starwars, aes(x = height, y = mass, fill = gender)) + 
  geom_point(shape = 21, size = 5) + 
  theme_light() + 
  geom_smooth(method = "lm") + 
  labs(x = "Height (cm)", y = "Weight (cm)",
       title = "StarWars profiles ",
       subtitle = "Mass vs Height Comparison",
       caption = "Source: The Star Wars API") 

Specify which data and features to use.
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Select a points plot (the most suitable for continuous data).

Use a built-in theme—a collection of specific layer styles.

Fit a linear model and show the results as a layer on the plot.

Add title and axes labels.

The results of this plotting operation are shown in Figure 5-3. With just several lines
of code, we created a beautiful plot, which can be extended even further.

Figure 5-3. An advanced ggplot2 plot

Now that we covered static visualizations, let’s see how to make them more interest‐
ing by adding interactivity!

Interactive Visualizations
Interactivity can be a great aid to exploratory plots. Two excellent R packages stand
out: Leaflet and plotly.
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6 Explore the official documentation for different map styles.
7 A color version is available for print readers online.

Interactivity in Python and R is often based on an underlying Java‐
Script codebase. Packages like Leaflet and plotly make this work
easier by providing a higher-level interface. Low-level packages for
interactive graphics, like D3.js, can be overwhelming to learn for
the novice. Thus, we’d encourage learning a high-level framework,
such as dimple.js instead.

Different datasets require different visualization methods. We covered the case of a 
standard tabular dataset (starwars), but how about something different? We’ll have a
go at visualizing data with a spatial dimension and use it to show R’s excellent capabil‐
ities in producing interactive plots. For this, I selected the Shared Cars Locations
dataset. It provides the locations of car-sharing vehicles in Tel-Aviv, Israel. Can we
show those on a map?

library(leaflet)
leaflet(data = shared_cars_data[1:20, ]) %>%
        addTiles() %>%
        addMarkers(lng = longitude, lat = latitude)

In this case, we subset the data using the first 20 rows only (to make the visualization
less cluttered). The addTiles function provides the map background, with the street
and city names.6 The next step is to add the markers that specify the car locations by
using addMarkers. The result of this relatively simple operation is shown in
Figure 5-4.

Figure 5-4. An interactive map plot with leaflet7
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8 An overview of those is available on scikit-learn.

As with the best data science tools, packages like Leaflet hide a lot of complexity
under the hood. They do much of the heavy lifting necessary for advanced visualiza‐
tion and enable the data scientist to do what they do best—focus on the data. There
are many more advanced features available in Leaflet, and we encourage the motiva‐
ted user to explore them.

As our book’s subtitle suggests, we are always attempting to take
the best of both worlds. So one easy way to do it is to use the
ggplotly command from the plotly package and pass it a ggplot2
plot. This will make the plot interactive!

Hopefully, this section has made clear why the EDA workflow makes using R and
tools such as ggplot2 and Leaflet the best options. We’ve just scratched the surface on
what’s possible, and if one decides to go deeper into the data visualization aspects,
there are a ton of great resources available.

Machine Learning
Nowadays, data science is used almost synonymously with machine learning (ML).
While there are many different workflows necessary for a data science project
(Figure 5-1), ML often steals the focus of aspiring data scientists. This is partly due to
an increasing growth surge in recent years due to the availability of large amounts of
data, better computing resources (such as better CPUs and GPUs), and the need for
predictions and automation in modern business. In the early days of the field, it was
known under a different name—statistical learning. As previously mentioned, statis‐
tics has been historically the primary domain of R. Thus there were good tools avail‐
able early on for doing ML in it. However, this has changed in recent years, and
Python’s tools have mostly overtaken its statistical competitor.

One can trace Python’s ML ecosystem’s success to one specific package: scikit-learn.
Since its early versions, the core development team has focused on designing an
accessible and easy-to-use API. They supported this with some of the most complete
and accessible documentation available in the open source world. It’s not only a refer‐
ence documentation but also contains excellent tutorials on various specific modern
ML applications, such as working with text data. scikit-learn provides access to
almost all common ML algorithms out of the box.8

Let’s have a look at some proof of why scikit-learn is so great for ML. First, we can
demonstrate the model imports:
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9 For those readers new to ML, supervised learning is concerned with prediction tasks where a target is avail‐
able (label), as compared to unsupervised learning where it’s missing, and the prediction task is on uncover‐
ing groups in the data.

from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LinearRegression

Here we can already see how consistently those models are designed—similar to
books in a well-organized library; everything is in the right place. ML algorithms in
scikit-learn are grouped based on their similarities. In this example, tree-based meth‐
ods such as DecisionTreeClassifier belong to the tree module. In contrast, linear
algorithms can be found in the linear_model one (i.e., if you want to perform a least
absolute shrinkage and selection operator [LASSO] model, you can, as you might
predict, find it in linear_model.Lasso). Such hierarchical design makes it easier to
focus on writing code and not to search for documentation since any good autocom‐
plete engine will find the relevant model for you.

We discussed modules in Chapter 3, but it’s a concept that bears
repeating since it might be confusing for some R users. Modules in
Python are nothing more than collections of organized scripts
(based on some similarities, such as “data_processing”), which
allows them to be imported into your applications, improving read‐
ability and making the codebase more organized.

Next, we need to prepare the data for modeling. An essential element of any ML
project is splitting the data into train and test sets. While newer R packages such as
mlr improve on this as well, scikit-learn has better (in terms of both consistency and
syntax) functions available:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.33,
                                                    random_state=42)

Suppose we have been consistent in the steps before and have followed traditional
ML convention. In that case, we have the X object to store our features and ‘y’—the
labels (in the case of a supervised learning problem).9 In this case, the data will be
randomly split. The official way to do this in R’s mlr is:

train_set = sample(task$nrow, 0.8 * task$nrow)
test_set = setdiff(seq_len(task$nrow), train_set)

This can be harder to understand, and there’s little documentation on how to perform
a more advanced split, such as by stratification, and another package might be
required, increasing the learning curve and cognitive load on the data scientist. scikit-
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learn, on the other hand, provides a handy function in StratifiedShuffleSplit.
The capabilities only increase further when we start to perform the actual modeling:

model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

These three code lines are all we need to initialize the model with default parameters,
fit (train) it on the training dataset, and predict on the test one. This pattern is consis‐
tent across projects (except for the model initialization, where one selects their algo‐
rithm of choice and its parameters—those do differ, of course). A visual comparison
between several different packages (from other developers and purposes) is shown in
Figure 5-6. Finally, let’s compute some performance metrics; many of them are
handily available:

from sklearn import metrics

acc = metrics.accuracy_score(predictions, y_test)
conf_matrix = metrics.confusion_matrix(predictions, y_test)
classif_report = metrics.classification_report(predictions, y_test)

The metrics module contains everything needed to check our model’s performance
with a simple and predictable API. The pattern of fit and predict we saw earlier has
been so influential in the open source world that it has been widely adopted by other
packages, such as Yellowbrick (a package for model performance visualization):

from yellowbrick.regressor import ResidualsPlot

visualizer = ResidualsPlot(regr)

visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()

There are many visualizations available in Yellowbrick (Figure 5-5), all obtained with
a similar procedure. The consistency and ease of use are among the significant rea‐
sons users want to use Python for ML. It enables the user to focus on the task at hand
and not on writing code and sifting through tedious documentation pages. There
were changes in R packages in recent years aiming at reducing those deficiencies.
Such packages most notably include mlr and tidymodels. Still, they are not widely
used, but perhaps this pattern can change in the future. There is an additional factor
to consider here, which is similar to the ecosystem interoperability we saw in Chap‐
ter 4. scikit-learn works very well with other tools in Python that are necessary for the
development and deployment of ML models. Such tools include database connec‐
tions, high-performance computing packages, testing frameworks, and deployment
frameworks. Writing the ML code in scikit-learn will enable the data scientist to be a
more productive part of a data team (just imagine the expression on your data engi‐
neering colleagues’ faces when you deliver an mlr model to them for deployment).
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Figure 5-5. Different possible Yellowbrick regression plots
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10 For a visual of ML architectures’ complexity, have a look at Google’s MLOps document.

Figure 5-6. API consistency overview in the Python ML ecosystem

Deep Learning
We won’t cover deep learning (DL) extensively here since most of the rationale from
scikit-learn (and Python in general) applies to it as well. Still, due to its increasing
importance in modern data science, it deserves a few additional comments.

The DL workflow has been mostly supported by two competing open source frame‐
works: TensorFlow (from Google) and PyTorch (from Facebook). There is an addi‐
tional framework, which was eventually included in TensorFlow, called Keras. It
provides a higher level of abstraction API to the TensorFlow functions, lowering the
learning curve. There have been two notable developments in the R ecosystem
regarding those DL frameworks. TensorFlow and Keras have been ported by using the
reticulate package (we’ll cover it in Chapter 6), which calls Python under the hood.
PyTorch, on the other hand, has been faithfully re-created on top of libtorch, the C+
+ backend of PyTorch in the torch package.

Due to those points, our recommendation is to use the Python tools for a DL work‐
flow, based on Keras and TensorFlow, except using torch, in the case you have an
existing R codebase.

To wrap up this section, we can summarize the main points about the ML workflow
and why Python tools better support it:

1. Focus has moved to real-time predictions and automation.
2. The Python ML workflow provides a more consistent and easy-to-use API.
3. Python is more of a glue language, ideal for combining different software compo‐

nents (i.e., frontend/backend and databases).10
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11 To learn more about what is REST, have a look at Wikipedia’s page.

12 The R alternative to Flask is plumber. The RStudio IDE provides a friendly interface to use this tool, but still,
it is lagging in options and adoption in the ML community.

In the next section, we’ll go deeper into the third part of this list and demonstrate the
recommended data engineering workflow.

Data Engineering
Despite the ML tools’ advancements in recent years, the completion rate of such
projects in companies remains low. One reason that is often credited for this is the
lack of data engineering (DE) support. To apply ML and advanced analytics, compa‐
nies need the infrastructural foundation provided by data engineers, including data‐
bases, data processing pipelines, testing, and deployment tools. Of course, this forms
a separate job title—data engineer. Still, data scientists need to interface with (and
sometimes implement themselves) those technologies to ensure data science projects
are completed successfully.

While DE is a massive field, we’ll focus on a subset for this section. We selected model
deployment for this since it’s the most common DE workflow that a data scientist
might need to participate in. So what is ML deployment? Most of the time, this means 
creating an application programming interface (API) and making it available to other
applications, either internally or externally (to customers, this is called “exposing” an
API, to be “consumed”). Commonly ML models are deployed via a representational
state transfer (REST) interface.11

ML model deployment, compared to the other topics in this chapter, requires inter‐
facing with many different technologies not directly related to data science. These
include web frameworks, CSS, HTML, JavaScript, cloud servers, load balancers, and
others. Thus it’s not surprising that Python tools dominate here—as we covered
before, it’s a fantastic glue language.12

The model deployment workflow requires code to be executed on
other machines rather than the local one where the data scientist
performs their daily work. This hits the “it works on my machine”
problem right on the head. There are different ways to deal with
managing different environments consistently, ranging from sim‐
ple to complex. A simple way to do this is to use a requirements.txt
file, where all dependencies are specified. A more complex option,
which is often used in large-scale, critical deployments, uses con‐
tainer solutions such as Docker. This dependency management is
much easier to achieve in Python than in R.
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13 For brevity, we will not go deeper into setting up virtual environments here. We urge the dedicated reader to
read up upon the virtualenv and renv tools, covered in Chapter 3.

14 The dataset is “Boston Housing,” available on scikit-learn.

One of the most popular tools to create an API is Python’s Flask—a micro-
framework. It provides a minimalist interface that is easy to extend with other tools,
such as ones providing user authentication or better design. To get started, we’ll go
through a small example. We would need a typical Python installation with some
other additional configurations such as a virtual environment and a GUI to query the
API.13 Let’s get started!

Recently competitors to Flask have sprung up. They serve the same
purpose but with an increased focus on ML. Two popular examples
include BentoML and FastAPI. Those frameworks provide you
with some additional options that make ML deployment easier.
Remember that Flask was initially built for web development APIs,
and the needs of an ML project can be different.

We’ll be building an API that predicts housing prices.14 It’s always prudent to start
with the end goal in mind and how we’d like such a predictive model to be used by an
external application or an end user. In this case, we can imagine our API to be inte‐
grated into an online house rental portal.

For brevity, we’ll omit the model training part. Imagine that you have followed a tra‐
ditional scikit-learn model development. The results of the predictive model are 
stored in a .pkl (Pickle object, the standard Python way to store objects on disk).
This process is called serialization, and we need to do it to use the model in the API
later:

import pickle

# model preparation and training part
# ...

# model serialization
outfile = open("models/regr.pkl", "wb")
pickle.dump(regr, outfile)
outfile.close()

print("Model trained & stored!")

We can save this code in a script called train_model.py. By running it: python
train_model.py, the pickled model will be produced and saved. Figure 5-7 provides
an overview of how the different components fit.
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Figure 5-7. Example architecture for an ML API

In our example, the API provides just one functionality—the abil‐
ity to predict a housing price on a dataset. Often in the real world,
the same application might need to do different things. This is 
organized by creating different endpoints. For example, there
might be an endpoint for triggering a data preparation script and a
separate inference one.

Let’s use Flask next:

import pickle
import numpy as np
from ast import literal_eval 
from flask import Flask, request, jsonify

app = Flask(__name__) 

infile = open("models/regr.pkl", "rb") 
regr = pickle.load(infile)
infile.close()

@app.route('/') 
def predict(methods=["GET"]):
    payload = request.json["data"]
    input_data = np.array(literal_eval(payload)).reshape(1, -1)
    prediction = regr.predict(input_data) 

    return jsonify({
        "prediction": round(float(prediction), 3) 
    })

if __name__ == '__main__':
    app.run(debug=True)

We use this function to specify that the payload string object is actually a
dictionary.

Here we create an object that holds the app.
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15 If you are more of a command-line person, have a look at curl.

In these several lines we load the serialized model.

This Python decorator creates an endpoint.

At this step, the serialized model is used for inference.

The inference results are returned in a JSON format.

This code is added to a file app.py. Once you execute this script, the command line
will output a local URL. We can then use a tool such as Postman to query it.15 Have a
look at Figure 5-8 to see how such a query works. Voilà—we built an ML API!

Figure 5-8. Querying the ML API with Postman
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Cloud Deployment
After you’re done with writing and testing the ML API code, the next phase would be
to deploy it. Of course, you could use your computer as a server and expose it to the
internet, but you can imagine that doesn’t scale very well (you have to keep your
machine running, and it might run out of resources). One of the significant changes
seen in recent years in terms of DE tools is the advent of cloud computing. Cloud
platforms such as AWS or Google Cloud Provider (GCP) provide you with excellent
opportunities and deploy your apps. Your Flask API can be deployed via a cloud ser‐
vice such as AWS Elastic Beanstalk or Google App Engine.

Due to the “glue-like” nature of Python packages, they dominate the DE workflow. If
a data scientist can write such applications on their own in Python, the success of the
complete data project is ensured.

Reporting
Every data scientist is aware (perhaps painfully so) of how vital communication is for
their daily work. It’s also an often underrated skill, so this mantra bears repeating. So,
what is more important than one of the essential deliverables of a data science project
—reporting your results?

There are different reporting methods available. The most typical use case for a data
scientist is to create a document, or a slide deck, containing the results of the analysis
they have performed on a dataset. This is usually a collection of visualizations with an
associated text and a consistent storyline (i.e., going through the different stages of a
project life cycle—data importing, cleaning, and visualization). There are other situa‐
tions where the report has to be referred to often and updated in real time, called
dashboards. And finally, some reports allow the end user to explore them more inter‐
actively. We’ll go through those three report types in the following subsections.

Static Reporting
The popularization of the markdown language helps data scientists focus on writing
code and associated thoughts instead of the tool itself. A flavor of this language—R
Markdown (RMD) is widely used in the R community. This allows for the concept of
literate programming, where the code is mixed with the analysis. The RStudio IDE
provides even further functionality with tools such as R Notebooks. This is how easy
writing an RMD report is:

# Analyzing Star Wars

First we start by importing the data.
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```{r}
library(dplyr)

data(starwars)
```

Then we can have a look at the result.

This .rmd file can then be knit (compiled) into a .pdf or an .html (best for interactive
plots), creating a beautiful report. There are additional templates to create even slides,
dashboards, and websites from RMD files. Have a look at Figure 5-9 to check it out in
action.

Figure 5-9. R Markdown editing within RStudio

As with everything in the open source world, data scientists worldwide have contrib‐
uted to the further development of RMD. There are many templates available for
RMD, enabling users to create everything from a custom-styled report to a dynami‐
cally generated blogging website.

The widely adopted alternative to RMD in the Python world is the
Jupyter Notebook (along with its newer version: Jupyter Lab). The
“r” in Jupyter stands for R, and it is certainly possible to use that,
but we argue that the RMD notebooks in RStudio provide a better
interface, at least for R work.

Interactive Reporting
What if we want to be able to let the recipients of our report do some work as well? If
we allow for some interactivity, our end users would answer questions for themselves
without relying on us to go back, change the code, and regenerate the graphs. There
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16 There’s an advanced new tool in Python, called Streamlit, but it is yet to gain in popularity and adoption.
17 To get inspired with what’s possible in shiny, look at the gallery of use cases at the RStudio website.

are several tools available,16 but most of them pale in comparison to the ease of use
and capabilities of R’s shiny package.17

Using this package requires a bit of a different way of writing R code, but you will
create fantastic applications once you get used to it. Let’s go through a basic yet prac‐
tical example. shiny apps consist of two fundamental elements: the user interface (UI)
and the server logic. Those are often even separated into two files. For simplicity we’ll
use the single file layout and use two functions for the app:

library(shiny)

ui <- fluidPage( 

    titlePanel("StarWars Characters"),

    sidebarLayout(
        sidebarPanel(
            numericInput("height", "Minimum Height:", 0, min = 1, max = 1000), 
            numericInput("weight", "Minimum Weight:", 0, min = 1, max = 1000),
            hr(),
            helpText("Data from dplyr package.")
        ),

        mainPanel(
           plotOutput("distPlot") 
        )
    )
)

This function specifies that we want to have a “fluid” layout that makes the app
responsive—easy to read on a variety of devices, such as smartphones.

Add the dynamic input for the user.

Add a dedicated area for the output.

The ui object contains all the frontend parts of the application. The actual computa‐
tion happens in the following function; we’ll be adding the ggplot from the DV
section:

server <- function(input, output) { 

    output$distPlot <- renderPlot({ 
        starwars_filtered <- starwars %>%
            filter(height > input$height & mass > input$weight) 
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18 A color version is available for print readers online.

        ggplot(starwars_filtered, aes(x = height, y = mass, fill = gender)) +
            geom_point(pch = 21, size = 5) +
            theme_light() +
            geom_smooth(method = "lm") +
            labs(x = "Height", y = "Mass",
            title = "StarWars Characters Mass vs Height Comparison",
            subtitle = "Each dot represents a separate character",
            caption = "Data Source: starwars (dplyr)") 
    })
}

The server needs two things: input and output.

There is just one output in our case.

We can add all kinds of R computations here, as in a regular R script.

The most recent item (in this case, a plot) is returned for display in the frontend.

The computation happens in this function. In the end, we need to pass those two
functions to shinyApp to see it in action. This step initiates the shiny backend, which
supports the inputs on from the ui function with computations in the server one.
The results of this are shown in Figure 5-10.

shinyApp(ui = ui, server = server)

Figure 5-10. An interactive report with shiny18
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One difference for our shiny app that might make it trickier to use than our mark‐
down files is that you would need to host the application on a remote machine. For a
normal .rmd on the files, you need to knit the file into a PDF and then share it. How
such applications are deployed is beyond this book’s scope.

Creating reports is a small but vital component of data science work. This is how your
work is shown to the outside world, be it your manager or another department. Even
if you have done a great job in your analysis, it will often be judged by how well you
communicate the process and results. Tools of literate programming such as RMD
and more advanced interactive reports in shiny can go a long way to creating state-of-
the-art reports. In the final chapter of this book, Chapter 7, we’ll provide a great 
example of this in action.

Final Thoughts
In this chapter, we went through the most essential workflows in a data science
project and discovered the best tools in R and Python. In terms of EDA and report‐
ing, R can be crowned the king. Packages such as ggplot2 are peerless in the data sci‐
ence community, and shiny can allow for fascinating new ways to present data science
results to stakeholders and colleagues. In the ML and DE worlds, Python’s glue-like
nature provides fantastic options, enabling modern data scientists to focus on the
work rather than the tools.
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PART IV

Bilingualism III: Becoming Synergistic

So far in this book we have been exploring the two languages in quite isolated cases.
We learned how to learn one from the other, and in which data formats and work‐
flows they excel. In all of those cases the separation has been quite distinct—for some
tasks R excels, and in others its general-purpose counterpart Python is a better
choice.

Chapter 6
In this chapter we’ll take a different perspective—one that can be heralding a new
way to work with programming languages in the future.

Chapter 7
As the final chapter of the book, it is fitting to apply all the concepts we have
learned so far. We’ll do this by going through a real-world case study of bilingual
data science.





CHAPTER 6

Using the Two Languages Synergistically

Rick J. Scavetta

Interoperability, the ability for different programming languages to work together, is
a cornerstone of computing. Ideally objects can be shared directly between the two
languages. As you can imagine, this can be problematic for a variety of reasons, like
memory usage and incompatible data storage structures to name just two. Although
there have been several attempts to implement this smoothly between Python and R,
it’s only been in the past couple of years that a reasonably functional kit had come to
fruition. I’ll discuss this in “Interoperability” on page 120. But it’s useful to first return
to the basics. This will not only give context to appreciate smooth interoperability
later on but also give you a basic solution that may already meet your needs. None‐
theless, if you want to get started with interoperability, you can skip the next section.

Faux Operability
The most basic type of interoperability, sometimes called cross-talk, is more of a faux
operability. Here, we execute predefined scripts across languages, passing information
between them using files as intermediaries. Imagine the following situation, which
I’ve diagrammed in Figure 6-1.
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1 Recall that rhs is the right-hand side and lhs is the left-hand side when calling operators, in this case <.

Figure 6-1. An example of cross-talk to facilitate interoperability

In R, after performing some necessary work on an object, e.g., PlantGrowth, we
execute:

# (Previous interesting and complicated steps omitted)

# Write a data.frame of interest to a file ...
rio::export(PlantGrowth, "pg.csv")

# ... which is then processed by a Python script
system('~/.venv/bin/python3 myScript_2.py < "pg.csv"')

The system() function executes a system command, provided as a character argu‐
ment. The command is made up of four parts.

First, ~/.venv/bin/python3 is the location of the Python executable within our virtual
environment, assuming that you’ve created one. We could have also included this in
the script’s shebang first line as #!/.venv/bin/env python3. This ensures that the
script is executed in the environment in which it was created. See “Virtual Environ‐
ments” on page 50 if this sounds strange to you.

Second, myScript_2.py is the name of the Python file that contains the commands we
want to execute.

Third, < allows us to redirect stdin from the rhs to the file on the lhs.1
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Fourth, "pg.csv" is the stdin. You may recall that there are three standard channels, or
streams, for command-line functions. stdin for the standard input, stdout for the
standard output, and stderr for the standard error. Here, stdin is hardcoded. It’s a
character string that corresponds to a file: "pg.csv,” which was exported in the previ‐
ous command. Hardcoding should be avoided for the most part, and we’re sure you
can imagine many ways to make this dynamic. That’s not really our focus here; the
point is to feed some input into a Python script.

Thus, we’re executing a Python script that takes stdin from within an R script, and
that stdin in itself is a product of the R script. Let’s take a look at the minimal com‐
ponents of this Python script:

import sys
import pandas as pd

# import the file specified by the standard input
myFile = pd.read_csv(sys.stdin)

# (Fantastically complex and very Pythonic code omitted)

# Write the first four lines to a file
myFile.head(4).to_csv("pg_small.csv")

First we need the sys module to handle stdin (sys.stdin). We import the file, repre‐
sented by sys.stdin using pandas, and after our Python script works its magic we
export some other output using the to_csv() method.

There are a lot of things wrong with this method, and we’ll get to them soon. But the
point is that it works, and sometimes, it’s exactly what you need. Working in a
research laboratory, I often had to provide results to colleagues quickly. I mean this
literally, since very expensive cell cultures would die and a week’s worth of work
would be wasted if the results were not ready. Preprocessing of proprietary raw data
and access to a secure server prohibited my colleagues from executing automated R
scripts. My solution was to first process the machine-generated proprietary data with
software specialized for the task. Then I was able to use a macOS Automator service
to execute a Perl script on that output, which was now my stdin. This Perl script then
called an R script that produced a file of a plot with all the relevant information
clearly displayed in the title. It wasn’t the most open or elegant solution, but it worked
and I got my plots with one mouse click in about half a second without any extra
websites or logins. Life was good, so what’s the problem?

Well, there are several problems. Let’s consider three.

First, in retrospect, I could have probably executed the entire workflow in R (exclud‐
ing the proprietary preprocessing). It’s necessary to consider simplifying a workflow
and having a good reason to use multiple languages. Deciding when and why to com‐
bine Python and R has come up throughout this book.
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2 In these tables we make a distinction between functions and objects. Recall that functions are themselves just
objects, but we don’t need to worry about these details at the moment.

Second, there are a lot of moving parts. We have several files and we’re even produc‐
ing additional intermediate ones. This increases the chance for error and confusion.
That’s not terrible, but we better take care to keep things organized.

Third, in many cases, this workflow works well when we can export an R data.frame
as a CSV file, which pandas can easily import. For more complex data structures, you
can export one or more R objects as an RDATA or RDS format file. The python pyr‐
eadr package provides functions to import these files and provide access to each
object stored in a dict.

Cross-talk is great, but true interoperability smooths out the wrinkles in this process
quite nicely. There are two widely used frameworks; the choice of which to use will
depend on which language is your starting point.

Interoperability
If you’re primarily using R and want access to Python, then the R package reticulate is
the way to go. Conversely, if you’re primarily using Python and want access to R, then
the Python module rpy2 is the tool for you. We can summarize this in Table 6-1 and
Table 6-2.2 In each table, read each line as a sentence beginning with the column
headers.

Table 6-1. Interoperability granted by reticulate

Access Using command
Python Functions in R, pd <- library(pandas); pd$read_csv()

Python Objects in R, py$objName

R Objects in Python, r.objName

Table 6-2. Interoperability granted by rpy2 when writing in Python

Access Using command
R Functions in Python, import rpy2.robjects.lib.ggplot2 as ggplot2

R Packages in Python, r_cluster = importr('cluster')

R Objects in Python, foo_py = robjects.r['foo_r']

The commands in Table 6-1 and Table 6-2 reveal how to access all varieties of objects
from one language directly from the other. In addition, we can also directly call func‐
tions. This is a real milestone since it relieves us of having to force one language to do
tasks that it doesn’t excel at and means that we don’t need to reinvent the wheel,
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introducing redundancy between the languages. At the time of writing, it was not
possible to access R functions from within Python in reticulate. You may attempt to
use reticulate for this task, but it would be easier to pass an object back to R and exe‐
cute R commands natively.

reticulate first appeared on CRAN in 2017, and has recently gained in popularity as it
matured. This package is developed by RStudio and is well integrated into the RStu‐
dio IDE itself, which is pretty convenient. However, at the time of writing, there are
some troublesome features (bugs?) that require some finesse (see the warning box
that follows). A good first step is to ensure you are using the latest public release of
RStudio and the latest version of the reticulate package and any associated packages,
such as knitr.

reticulate is well supported and stable enough to be used in pro‐
duction. Nonetheless, you may encounter issues depending on
your system and software versions. Since this tool combines tech‐
nologies, it can also be difficult to debug, and documentation is still
somewhat scarce. Stay up-to-date with new versions as they are
released. If you encounter issues on your local machine, call up our
RStudio Cloud project.

In this section we’ll begin with two scripts, listed in Table 6-3. You’ll find these in this
chapter’s folder in the book’s repository.

Table 6-3. Up and running with reticulate

File Description

0 - Setup.Rmd Setting up reticulate and virtual environments

1 - Activate.R Activating a Python virtual environment

Let’s begin with the R script, 0 - Setup.R. Make sure you’ve installed reticulate and
have initialized it in your environment:

library(reticulate)

First, we need to specify which build of Python we’ll use. You can let R use your sys‐
tem default or set the specific build of Python you want to use by going to Tools >
“Project options” and selecting the Python icon (see Figure 6-2).
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Figure 6-2. Selecting a specific Python version and build to use

Let’s check to see the version we’re using:

reticulate::py_config()

python:         /usr/local/bin/python3.8
libpython:      /Library/Frameworks/Python.framework/Versions/3.8...
pythonhome:     /Library/Frameworks/Python.framework/Versions/3.8...
version:        3.8.6 (v3.8.6:db455296be, Sep 23 2020, 13:31:39) ...
numpy:           [NOT FOUND]
sys:            [builtin module]

To be clear, we don’t need to use RStudio to set the Python version. This is just a con‐
venience feature. We could have executed:

use_python("/usr/local/bin/python3.8", required = TRUE)

Note that this function just makes a suggestion and doesn’t result in an error if the
desired build is not found unless the required argument is set to TRUE.

Before we proceed, we’ll want to establish a virtual environment. If you’re on Win‐
dows, you’ll have to use a conda environment, which we’ll get to in a minute. For
everyone else, use the following command to create a virtual environment called
modern_data:

virtualenv_create("modern_data")
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Previously, when we used the venv package in Python, the virtual environment was
stored as a hidden directory (typically called .venv in the project directory). So where
are the Python virtual environments now? We can have a look with the following
command:

virtualenv_root()

[1] "~/.virtualenvs"

They are all stored in a hidden folder in the root directory. We can see all our virtual
environment using the following command:

virtualenv_list()

As is the case for most popular data science packages, there is a
cheat sheet available for reticulate. You can download it directly
from RStudio.

This is a departure from what we saw with virtual environments in Python, where
they were stored within the project directory. Nonetheless, it’s convenient since we
can easily reuse a good environment for many projects.

Note that to remove a virtual environment, we need to pass the path as such:

virtualenv_remove("~/modern_data")

The next step is to install the appropriate packages:

virtualenv_install("modern_data", "pandas")

Alternatively, you can use the Tidyverse purrr::map() function to install many
packages:

library(tidyverse)
c("scikit-learn", "pandas", "seaborn") %>%
  map(~ virtualenv_install("modern_data", .))

If you’re on Windows, use the following commands:

# For windows users:
# Install a minimal version of Conda
install_miniconda()

# List your Conda virtual environments
conda_list()

# Create a new virtual environment
conda_create("modern_data")

# Install a single...
conda_install("modern_data", "scikit-learn")
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#...or multiple packages:
library(tidyverse)
c("scikit-learn", "pandas", "seaborn") %>%
  map(~ conda_install("modern_data", .))

The final step is to activate our virtual environment. This seems to be an area under
rapid development. Different error messages, or none at all, are produced depending
on your versions of reticulate and RStudio, making them harder to debug. From my
experience, your safest bet is to (i) make sure all your R packages, as well as RStudio,
are up-to-date and (ii) restart R before activating your virtual environment. You can
do this in the RStudio menu Session > Restart R, the keyboard shortcut Shift-
Command/Ctrl + F10, or executing the command .rs.restartR(). You can also lit‐
erally close and restart RStudio. This ensures that there is no Python build in active
use and we can establish one from scratch. Thus, we have one R script for set up,
where we create a virtual environment and install packages, and another with our
actual analysis, where we load reticulate and activate our virtual environment.

library(reticulate)
use_virtualenv("modern_data", required = TRUE)

# Alternatively, for miniconda:
# use_miniconda("modern_data")

And finally, we can confirm which build we have using:

py_config()

You should see the following output. Importantly, make sure that the path to your vir‐
tual environment is stated in the first line: /.virtualenvs/modern_data/bin/python.

python:         /Users/user_name/.virtualenvs/modern_data/bin/python
libpython:      /Library/Frameworks/Python.framework/Versions/3.8...
pythonhome:     /Users/user_name/.virtualenvs/modern_data...
version:        3.8.6 (v3.8.6:db455296be, Sep 23 2020, 13:31:39)
numpy:          /Users/user_name/.virtualenvs/modern_data/lib/python3.8/...
numpy_version:  1.20.1

If you see something like /usr/local/bin/python3.8, then RStudio is still directed
to use the Python version you defined at the beginning of the chapter and not a vir‐
tual environment. This may serve you well, but it is preferable to use a virtual
environment.
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Going Deeper
At this point, we’ve created a virtual environment, installed some packages in it,
restarted R, and activated the virtual environment. These steps are covered in the the
scripts 0 - Setup.R and 1 - Activate.R. For the rest of this section I’ll cover ways
to pass information between R and Python, which I’ve summarized in Table 6-4.

Table 6-4. Interoperability granted by reticulate

File Description

2 - Passing objects.Rmd Pass objects between R and Python in an R Markdown document

3 - Using functions.Rmd Call Python in an R Markdown document

4 - Calling scripts.Rmd Call Python by sourcing a Python script

5 - Interactive mode.R Call Python using a Python REPL console

6 - Interactive document.Rmd Call Python with dynamic input in an interactive document

Why “reticulate”? The reticulated python is a species of python
found in Southeast Asia. They are the world’s longest snakes and
longest reptiles. The species name, Malayopython reticulatus, is
Latin meaning “net-like,” or reticulated, and is a reference to the
complex color pattern.

I’ll consider the scenarios in Table 6-1 in the following subsections. To follow along
with these examples, please ensure that you have followed the set up and activation
instructions found in 0 - Setup.R and 1 - Activate.R—both in the book’s code
repository. You’ll need to have the modern_data virtual environment and the preced‐
ing list of packages installed. If you’re using Miniconda, be sure to use the correct
command given in each file to activate your virtual environment.

Pass Objects Between R and Python in an R Markdown Document
The following commands can be found in the file 2 - Passing objects.Rmd. To access
an R object in Python, use the r object, and to access a Python object in R, use the py
object. Consider the following chunks found in an R Markdown document:

```{python}
a = 3.14
a
```

```{r}
py$a
```
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3 Refer to the Appendix for a summary of data structures.

The python object a is accessed in the R object py using the $ notation. In the oppo‐
site direction:

```{r}
b <- 42
b
```

```{python}
r.b
```

In Python, call the r object and use . notation to access R objects by name. These are 
scalars, or simple vectors, but of course we can pass more complex items directly
between the two languages. reticulate will take care of object conversion for us. Con‐
sider the following case:

```{r}
# A built-in data frame
head(PlantGrowth)
```

```{python}
r.PlantGrowth.head()
```

An R data.frame is accessed as a Python pd.DataFrame. However, if you don’t have
pandas installed you’ll see a dict object, a Python dictionary.

A Python NumPy ndarray will be converted to an R matrix:3

```{python eval = TRUE}
from sklearn.datasets import load_iris

iris = load_iris()
iris.data[:6]
```

A Python NumPy ndarray as an R matrix:

```{r eval = TRUE}
head(py$iris$data)
```

Notice how the . notation in Python, iris.data, is automatically accessible using the
$ notation in R: py$iris$data. This holds true for nested objects, methods, and
attributes, just as they would in Python.
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Call Python in an R Markdown Document
The following commands can be found in the file 3 - Using functions.Rmd. We’ll con‐
tinue to use the classic iris dataset that we accessed in Python in the previous section.
Inside an R Markdown document, we’ll access a Python function, which allows us to
access the trained support vector machine classifier to predict classification on new
values. This is a very naïve machine learning workflow and is not intended to pro‐
duce a valuable model. The point is to demonstrate how to access a model from
Python in R.

The entire model configuration is defined here:

```{python}
# import modules
from sklearn import datasets
from sklearn.svm import SVC

# load the data:
iris = datasets.load_iris()

# Create an instance of the SVC, _Support Vector Classification_, class.
clf = SVC()

# Train the model by calling the fit method on the target data, using target names
clf.fit(iris.data, iris.target_names[iris.target])

# Predict the class of new values, here the first three
clf.predict(iris.data[:3])
```

The method clf.predict() takes an ndarray as input and returns the named classi‐
fication. To access this function in R, we can once again use the py object, as in py
$clf$predict(). The iris dataset in R is a data.frame, where the fifth column is the
classification. We must convert this to a Python object using r_to_py(), in this case
excluding the fifth column.

```{r}
py$clf$predict(r_to_py(iris[-5]))
```

Call Python by Sourcing a Python Script
The following commands can be found in the file 4 - Calling scripts.Rmd and 4b -
Calling scripts.R. In this scenario we’ll execute an entire Python script and access all
objects and functions available therein. To do this we can call:

source_python("SVC_iris.py")

This works just as well in an R Markdown document as in a script.
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Although this appears very similar to the previous section, there is a very important
distinction. Python environments activated in this manner provide functions and
objects directly. Thus we can call:

clf$predict(r_to_py(iris[-5]))

This is convenient, but also disconcerting. Not only has the syntax changed, i.e., no
need for py$, but objects loaded in the R environment may conflict. Python objects
will mask R objects, so be very careful about naming conflicts! You’ll notice that in
SVC_iris.py we’ve renamed the Python iris dataset to iris_py to avoid problems
when calling iris in R.

Call Python Using the REPL
The following commands can be found in the file 5 - Interactive mode.R. In this sce‐
nario we’ll start up a Python REPL console, using the following command:

repl_python()

REPL stands for read-eval-print loop. It is a common feature in
many languages where the user can experiment in an interactive
way, as opposed to writing a script that needs to be run.

This will allow you to directly execute Python commands in an interpreter. For exam‐
ple, try executing the commands we saw in the last example:

from sklearn import datasets
from sklearn.svm import SVC
iris = datasets.load_iris()
clf = SVC()
clf.fit(iris.data, iris.target_names[iris.target])
clf.predict(iris.data[:3])

We can exit the interpreter by executing the Python exit command:

exit

Just like we’ve seen before, the functions and objects in this Python environment can
be accessed in R. This is truly interactive programming because we’re executing com‐
mands directly in the console. Although we present this scenario for the sake of com‐
pleteness, repl_python() is not really meant to be used in everyday practice.
Actually, it’s what is called when an R Markdown chunk uses a Python kernel. So
although you can do this, be cautious! This presents a considerable problem in repro‐
ducibility and automation, but you may find it useful for quickly checking some
commands.
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Call Python with Dynamic Input in an Interactive Document
The following commands can be found in the file 6 - Interactive document.Rmd.

By now we’ve seen all the core functionality of reticulate. Here we’ll go beyond that
and show a very simple way to introduce interactivity using a shiny runtime in an R
Markdown document. To see the interactivity, make sure you have the shiny package
installed and that you render the document to HTML. In RStudio, you can do this by
clicking the Run Document button when the file is open.

First, in the header of our document we need to specify this new runtime
environment:

---
title: "Python & R for the Modern Data Scientist"
subtitle: "A bilingual case study"
runtime: shiny
---

The following Python code, which we’ve seen, is executed in a Python chunk:
```{python}
from sklearn import datasets
from sklearn.svm import SVC
iris = datasets.load_iris()

clf = SVC()
clf.fit(iris.data, iris.target_names[iris.target])
```

In the final two chunks, we can use functions from the shiny package to produce a
user interface. This consists of both input and output.

First, the input. We produce a slider for each of the four features using the sliderIn
put() function as follows to sl. The sliders for sw, pl, and pw are similar and can be
found in the case study script.

sliderInput("sl", label = "Sepal length:",
            min = 4.3, max = 7.9, value = 4.5, step = 0.1)

Second, the output. We call the values from the sliders as named elements (sl, sw, pl,
and pw) in an R list object called input (input$sl). These values are used as input to
the Python predict() function. The Python output is assigned to the R object
prediction:

prediction <- renderText({
  py$clf$predict(
    r_to_py(
      data.frame(
        sl = input$sl,
        sw = input$sw,
        pl = input$pl,
        pw = input$pw)
    )
  )
})
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Finally, we call the R object prediction as an inline command, `r prediction`, to
print the result to the screen as a sentence.

Final Thoughts
In this chapter we’ve covered the core components of the reticulate package, pro‐
gressing from the essential set up to the basics and finally a simple yet powerful
implementation that showcases the strengths of R, Python, and reticulate. Using this 
knowledge, we’ll continue to a larger case study in the last chapter.
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1 Short, Karen C. 2017. Spatial wildfire occurrence data for the United States, 1992-2015, FPA_FOD_20170508.
4th Edition. Fort Collins, CO: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2013-0009.4.

CHAPTER 7

A Case Study in Bilingual Data Science

Rick J. Scavetta
Boyan Angelov

In this final chapter, our goal is to present a case study that demonstrates a sample of
all the concepts and tools we’ve shown throughout this book. Although data science
provides a practically overwhelming diversity of methods and applications, we typi‐
cally rely on a core tool kit in our daily work. Thus, it’s unlikely that you’ll make use
of all the tools presented in this book (or this case study, for that matter). But that’s
alright! We hope that you’ll focus on those parts of the case study that are most rele‐
vant to your work and that you’ll be inspired to be a modern, bilingual data scientist.

24 Years and 1.88 Million Wildfires
Our case study will focus on the US Wildfires dataset.1 This dataset, released by the
US Department of Agriculture (USDA), contains 1.88 million geo-referenced wildfire
records. Collectively, these fires have resulted in the loss of 140 million acres of forest
over 24 years. If you want to execute the code in this chapter, download the SQLite
dataset from the USDA website directly or from Kaggle, and place it inside the ch07/
data directory

There are 39 features, plus another shape variable in raw format. Many of these are
unique identifiers or redundant categorical and continuous representations. Thus, to
simplify our case study, we’ll focus on a few features listed in Table 7-1.
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2 We’ll leave a thorough development of a robust classification model to our motivated readers. Indeed, you
may also be interested in a regression that predicts the final fire size in acres. Curious readers will note that a
few interesting notebooks are available on Kaggle to get you started.

3 This is a far cry from developing, hosting, and deploying robust ML models, which, in any case, is not the
focus of this book.

Table 7-1. The Fires table contains 39 features describing over 1.88 million wildfires in the US
from 1992 to 2015

Variable Description
STAT_CAUSE_DESCR Cause of the fire (the target variable)

OWNER_CODE Code for primary owner of the land

DISCOVERY_DOY Day of year of fire discovery or confirmation

FIRE_SIZE Estimate of the final fire size (acres)

LATITUDE Latitude (NAD83) of the fire

LONGITUDE Longitude (NAD83) of the fire

We’ll develop a classification model to predict the cause of a fire (STAT_CAUSE_CODE)
using the five other features as features. The target and the model are secondary; this
is not an ML case study. Thus, we’re not going to focus on details such as cross-
validation or hyperparameter tuning.2 We’ll also limit ourselves to observations from
2015 and exclude Hawaii and Alaska to reduce the dataset to a more manageable size.
The end product of our case study will be to produce an interactive document that
will allow us to input new predictor values, as depicted in Figure 7-1.3

Before we dig in, it’s worth taking a moment to consider data lineage—from raw to
product. Answering the following questions will help orientate us.

1. What is the end product?
2. How will it be used, and by whom?
3. Can we break down the project into component pieces?
4. How will each component be built? That is, Python or R? Which additional pack‐

ages may be necessary?
5. How will these component pieces work together?

Answering these questions allows us to draw a path from the raw data to the end
product, hopefully avoiding bottlenecks along the way. For Question 1, we’ve already
stated that we want to build an interactive document. For the second question, to
keep things simple, let’s assume it’s for us to easily input new feature values and see
the model’s prediction.
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Questions 3–5 are what we’ve considered in this book. In Question 3, we imagine the
parts as a series of steps for our overall workflow. Question 4 was addressed in Chap‐
ter 4 and Chapter 5. We summarize those steps in Table 7-2.

Table 7-2. The steps in our case study and their respective languages

Component/Step Language Additional packages?
1. Data importing R RSQLite, DBI

2. EDA and data visualization R ggplot2, GGally, visdat, naniar

3. Feature engineering Python scikit-learn

4. Machine learning Python scikit-learn

5. Mapping R Leaflet

6. Interactive web interface R shiny runtime in an R Markdown

Finally, Question 5 asks us to consider the project architecture. The diagram presen‐
ted in Figure 7-1 shows how the steps in Table 7-2 will be linked together.

Figure 7-1. Architecture for our case study project

Alright, now that we know where we’re going, let’s choose our tools with care and
assemble all the components into a unified whole.

We prepared this case study exclusively using the RStudio IDE. As
we discussed in Chapter 6, if we’re writing in R and accessing
Python functions, this would be the way to go. The reason is the
built-in capabilities in executing Python code chunks within R
Markdown, the features of the Environment and Plot panes, and
finally, the tooling around shiny.
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4 Some readers might not be familiar with this language. It is commonly used to specify configuration options
as code, such as in this case.

Setup and Importing Data
We can see from our diagram that our end product will be an interactive R Mark‐
down document. So let’s begin as we did in Chapter 5. Our YAML header will consist
of at least:4

---
title: "R & Python Case Study"
author: "Python & R for the modern data scientist"
runtime: shiny
---

To have nicer formatting, we’ll exclude the characters specifying an
R Markdown chunk from the following examples. Naturally, if you
are following along, you need to add them.

Since the data is stored in an SQLite database, we need to use some additional pack‐
ages in addition to ones we’ve already seen. Our first code chunk is:

library(tidyverse)
library(RSQLite) # SQLite
library(DBI) # R Database Interface

In our second code chunk, we’ll connect to the database and list all of the 33 available
tables:

# Connect to an in-memory RSQLite database
con <- dbConnect(SQLite(), "ch07/data/FPA_FOD_20170508.sqlite")

# Show all tables
dbListTables(con)

Creating a connection (con) object is a standard practice in establishing program‐
matic access to databases. In contrast to R, Python has built-in support for opening
such files with the sqlite3 package. This is preferable to R since we don’t need to
install and load two additional packages. Nonetheless, R is a core language for the ini‐
tial steps, so we might as well just import the data in R from the outset.

Our data is stored in the Fires table. Because we know the columns we want to access,
we can specify that while importing.
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5 This part can also be done very well within R by using packages such as dbplyr or the using the Connections
panel in RStudio.

It’s also important to remember to close the connections when working with remote
or shared databases because that might prevent other users from accessing the data‐
base and cause issues.5

fires <- dbGetQuery(con, "
                        SELECT
                        STAT_CAUSE_DESCR, OWNER_CODE, DISCOVERY_DOY,
                        FIRE_SIZE, LATITUDE, LONGITUDE
                        FROM Fires
                        WHERE (FIRE_YEAR=2015 AND STATE != 'AK' AND STATE !=
                               'HI');")
dbDisconnect(con)

dim(fires)

We limit our dataset size already at this very first importing step. It’s a shame to throw
out so much data. Still, we do this because older data, especially in climate applica‐
tions, tends to be less representative of the current or near-future situation. Predic‐
tions based on old data can be inherently biased. By limiting the size of the dataset,
we also reduce the amount of memory used, improving performance.

Often in the case of enormous datasets (those barely or not fitting
into the memory of your machine), you can use an ingestion com‐
mand to select just a sample, such as LIMIT 1000.

We can get a preview of the data using the tidyverse function dplyr::glimpse():

glimpse(fires)

Rows: 73,688
Columns: 6
$ STAT_CAUSE_DESCR <chr> "Lightning", "Lightning", "Lightning", "Lightning"…
$ OWNER_CODE       <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 5, 8, 5,…
$ DISCOVERY_DOY    <int> 226, 232, 195, 226, 272, 181, 146, 219, 191, 192, …
$ FIRE_SIZE        <dbl> 0.10, 6313.00, 0.25, 0.10, 0.10, 0.25, 0.10, 0.10,…
$ LATITUDE         <dbl> 45.93417, 45.51528, 45.72722, 45.45556, 44.41667, …
$ LONGITUDE        <dbl> -113.0208, -113.2453, -112.9439, -113.7497, -112.8…
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EDA and Data Visualization
Because the dataset is still relatively large, we should think carefully about the best
data visualization strategy. Our first instinct may be to plot a map since we have lati‐
tude and longitude coordinates. This can be fed into ggplot2 directly as x- and y-axis
coordinates as such:

g <- ggplot(fires, aes(x = LONGITUDE,
                  y = LATITUDE,
                  size = FIRE_SIZE,
                  color = factor(OWNER_CODE))) +
  geom_point(alpha = 0.15, shape = 16) +
  scale_size(range = c(0.5, 10)) +
  theme_classic() +
  theme(legend.position = "bottom",
        panel.background = element_rect(fill = "grey10"))

g

By mapping OWNER_CODE onto the color aesthetic (Figure 7-2), we can see a strong
correlation in some states. We can predict that this will have a substantial effect on
our model’s performance.

Figure 7-2. Plotting the sizes of individual fires
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6 This package is used to extend the ggplot2 functionality for transformed datasets.

In the preceding code snippet, we assigned the plot to the object g. This is not strictly
necessary, but we did it in this case to showcase the strength of the ggplot2 layering
method. We can add a facet_wrap() layer to this plot and separate it into 13 facets,
or small multiples, one for each type of STAT_CAUSE_DESCR (Figure 7-3):

g +
  facet_wrap(facets = vars(STAT_CAUSE_DESCR), nrow = 4)

Figure 7-3. Faceting the fires plot, based on the fire cause

This allows us to appreciate that some causes are abundant while others are rare, an
observation we’ll see again shortly in a different way. We can also begin to assess any
strong associations between, e.g., region, owner code, and cause of a fire.

Returning to the entirety of the dataset, an easy way to get a comprehensive overview
is to use a pairs plot, sometimes called a splom (or scatter plot matrix if it consists of
purely numeric data). The GGally package provides an exceptional function,
ggpairs() that produces a matrix of plots (Figure 7-4).6 Each pairwise bivariate plot
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is shown as univariate density plots or histograms on the diagonal. In the upper tri‐
angle, the correlation between continuous features is available:

library(GGally)
fires %>%
  ggpairs()

Figure 7-4. A pairs plot

This information-rich visualization demands some time to process. It’s handy as an
exploratory plot, in EDA, but not necessarily as an explanatory plot in reporting our
results. Can you spot any unusual patterns? First, STAT_CAUSE_DESCR looks imbal‐
anced, meaning there is a significant difference between the number of observations
per class. Additionally, OWNER_CODE appears to be bimodal (having two maxima).
Those properties can negatively affect our analysis, depending on which model we
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choose. Second, all correlations seem to be relatively low, making our job easier (since
correlated data is not good for ML). Still, we already know there is a strong associa‐
tion between location (LATITUDE and LONGITUDE) and owner code from our previous
plot. So we should take these correlations with a grain of salt. We would expect to
detect this issue in feature engineering. Third, FIRE_SIZE has a very unusual distribu‐
tion. It looks like that plot is empty, with just the x- and y-axes present. We see a 
density plot with a very high and narrow peak at the very low range and an extremely
long positive skew. We can quickly generate a log10 transformed density plot
(Figure 7-5):

ggplot(fires, aes(FIRE_SIZE)) +
  geom_density() +
  scale_x_log10()

Figure 7-5. Density plot of the log-transformed FIRE_SIZE feature
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7 A color version is available for print readers online.

For the case study, we’ll keep the tasks to a minimum, but there
might be a few other interesting things to visualize that can help tell
a story for the end user. For example, note that the dataset has a
temporal dimension. It would be interesting to see how forest fires’
quantity (and quality) has been changing over time. We’ll leave this
to the motivated user to explore with the excellent gganimate
package.

Interactive data visualization is often used without a special purpose in mind. Even
for the most popular packages, the documentation shows just basic usage. In our
case, since we have so many data points in a spatial setting, and we want to have a
final deliverable that is accessible, creating an interactive map is an obvious choice. As
in Chapter 5, we use Leaflet (Figure 7-6):

library(leaflet)

leaflet() %>%
  addTiles() %>%
  addMarkers(lng = df$LONGITUDE, lat = df$LATITUDE,
  clusterOptions = markerClusterOptions()
)

Figure 7-6. Interactive map showing the locations of forest fires7
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8 This is not a thorough exposition of all possible methods or optimizations since our focus is on building a
bilingual workflow, not exploring machine learning techniques in detail. Readers may choose to refer to the
official scikit-learn documentation for further guidance, in the aptly named “Choosing the right estimator”.

Note how using clusterOptions allows us to simultaneously present all of the data
without overwhelming the user or reducing visibility. For our purposes, this satisfies
our curiosity about using some great visualizations in EDA. There are plenty of other
statistics we can apply, but let’s move to machine learning in Python.

Machine Learning
By now, we have some idea about the factors that may influence the cause of a fire.
Let’s dive into building a machine learning model using scikit-learn in Python.8

We argued that ML is best done in Python as we saw in Chapter 5. We’ll use a random
forest algorithm. There are several reasons for this choice:

1. It’s a well-established algorithm.
2. It’s relatively easy to understand.
3. It does not require feature scaling before training.

There are other reasons why it’s good, such as working well with missing data and
having out-of-the-box explainability.

Setting Up Our Python Environment
As discussed in Chapter 6, there are a few ways to access Python using the reticulate
package. The choice depends on the circumstances, which we laid out in our project
architecture. Here, we’ll pass our R data.frame to a Python virtual environment. If
you followed the steps in Chapter 6, you’d already have the modern_data virtual envi‐
ronment set up. We already installed some packages into this environment. To recap,
we executed the following commands:

library(reticulate)

# Create a new virtualenv
virtualenv_create("modern_data")

# Install Python packages into this virtualenv
library(tidyverse)
c("scikit-learn", "pandas", "seaborn") %>%
  purrr::map(~ virtualenv_install("modern_data", .))

If you don’t have the modern_data virtualenv or you’re using Windows, refer to the
steps in the files 0—setup.R and 1—activate.R and discussed in Chapter 6. You may
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want to restart R at this point to make sure that you’ll be able to activate your virtual
environment using the following command:

# Activate virtual environment
use_virtualenv("modern_data", required = TRUE)

# If using miniconda (windows)
# use_condaenv("modern_data")

We’ll include all the Python steps into a single script; you can find this script in the
book’s repository under ml.py. First, we’ll import the necessary modules:

from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import metrics

Feature Engineering
There are features in the dataset that might be informative to a data analyst but are at
best useless for training the model, and at worst can reduce its accuracy. This is called
adding noise to the dataset, and we want to avoid it at all costs. This is the purpose
behind feature engineering. Let’s select just the features we need, as specified in
Table 7-1. We also use standard ML conventions in storing them in X, and our target
in y:

features = ["OWNER_CODE", "DISCOVERY_DOY", "FIRE_SIZE", "LATITUDE", "LONGITUDE"]
X = df[features]
y = df["STAT_CAUSE_DESCR"]

Here, we create an instance of the LabelEncoder. We use this to encode a categorical
feature to numeric. In our case, we apply it to our target:

le = LabelEncoder()
y = le.fit_transform(y)

Here, we split the dataset into a training and a test set (note that we are also using the
handy stratify parameter to make sure the splitting function samples our imbal‐
anced classes fairly):

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
                                                    random_state=42, stratify=y)

Model Training
To apply the random forest classifier, we’ll make an instance of RandomForestClassi
fier. As in Chapter 5 we use the fit/predict paradigm and store the predicted val‐
ues in preds:

clf = RandomForestClassifier()
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clf.fit(X_train, y_train)

preds = clf.predict(X_test)

In the final step, we’ll assign the confusion matrix and the accuracy score to objects:

conmat = metrics.confusion_matrix(y_test, preds)
acc = metrics.accuracy_score(y_test, preds)

After we have completed our script, we can source it into R:

source_python("ml.py")

After running this command, we’ll have access to all the Python objects directly in
our environment. The accuracy is 0.58, which is not phenomenal, but certainly much
better than random!

When we use the source_python function from reticulate we can
significantly increase our productivity, especially if we are working
in a bilingual team. Imagine the scenario when a coworker of yours
builds the ML part in Python and you need to include their work in
yours. It would be as easy as sourcing without worrying about
recoding everything. This scenario is also plausible when joining a
new company or project and inheriting Python code that you need
to use straightaway.

If we want to take advantage of ggplot to examine the confusion matrix, we first need
to convert to an R data.frame. The value is then the number of observations of each
case, which we map onto size, and change the shape to 1 (a circle). The result is
shown in Figure 7-7:

library(ggplot2)
py$conmat %>%
  as.data.frame.table(responseName = "value") %>%
  ggplot(aes(Var1, Var2, size = value)) +
  geom_point(shape = 1)
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Figure 7-7. Plot of the classifier confusion matrix

It’s not surprising that we have some groups with a very high match since we already
knew that our data was imbalanced to begin with. Now, what do we do with this nice
Python code and output? At the end of Chapter 6, we saw a simple and effective way
to create an interactive document (remember what you learned in Chapter 5) using
an R Markdown with a shiny runtime. Let’s implement the same concept here.

Prediction and UI
Once we have established a Python model, it’s general practice to test it with mock
input. This allows us to ensure our model can handle the correct input data and is
standard practice in ML engineering before connecting it with real user input. To this
end, we’ll create five sliderInputs for the five features of our model. Here, we’ve
hardcoded the min and max values for the sake of simplicity, but these can, of course,
be dynamic:

sliderInput("OWNER_CODE", "Owner code:",
            min = 1, max = 15, value = 1)
sliderInput("DISCOVERY_DOY", "Day of the year:",
            min = 1, max = 365, value = 36)
sliderInput("FIRE_SIZE", "Number of bins (log10):",
            min = -4, max = 6, value = 1)
sliderInput("LATITUDE", "Latitude:",
            min = 17.965571, max = 48.9992, value = 30)
sliderInput("LONGITUDE", "Longitude:",
            min = -124.6615, max = -65.321389, value = 30)
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Similar to what we did at the end of Chapter 6, we’ll access these values in the internal
input list and use a shiny package function to render the appropriate output
(Figure 7-8).

prediction <- renderText({
  input_df <- data.frame(OWNER_CODE = input$OWNER_CODE,
                         DISCOVERY_DOY = input$DISCOVERY_DOY,
                         FIRE_SIZE = input$FIRE_SIZE,
                         LATITUDE = input$LATITUDE,
                         LONGITUDE = input$LONGITUDE)

  clf$predict(r_to_py(input_df))
})

Those elements will respond dynamically to changes in user input. This is precisely
what we need for our work since this is an interactive product and not a static one.
You can see all of the different code blocks that we used in preparation for this
project. They should require little change, with the most notable one being the ability
to capture the user input in the inference part. This can be done by accessing the
input object.

Final Thoughts
In this case study, we demonstrated how you could make the best of both worlds and 
combine the excellent tools that modern data scientists have at their disposal to create
remarkable user experiences, which delight visually and inform decision making.
This is but a basic example of such an elegant system, and we are confident that by
showing you what’s possible, you—our readers—will create the data science products
of the future!

Final Thoughts | 145



Figure 7-8. The result of our case study
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APPENDIX

A Python:R Bilingual Dictionary

The following dictionary is meant to be used as a quick reference for translating com‐
mands between Python and R. Visit the book’s repo for access to other resources.

Corrections and additions are welcome. Please contact Rick on LinkedIn or place an
issue on the repo. For a downloadable summary, please visit the book’s website.

Aside from some command-line expressions to be entered in the terminal, which are
explicitly noted, expressions are in R or Python. 

Package Management
Table A-1. Installing a single package

install.packages("tidyverse") # Command line
pip install pandas

Table A-2. Installing specific package versions

devtools::install_version(
  "ggmap",
  version = "3.5.2"
  )

# Command line
pip install pandas==1.1.0
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Table A-3. Installing multiple packages

install.packages(c("sf", "ggmap")) # Command line
pip install pandas scikit-learn seaborn

Write a list of all packages (and versions) in use to requirements.txt
# Command line
pip freeze > requirements.txt

Use requirements.txt as input to install packages in a new environment:
# Command line
pip install -r requirements.txt

Table A-4. Loading packages

# Multiple calls to library()
library(MASS)
library(nlme)
library(psych)
library(sf)

# Install if not already available:
if (!require(readr)) {
  install.packages("readr")
  library(readr)
  }

# Check, install if necessary, and
# load single or multiple packages:
pacman::p_load(MASS, nlme, psych, sf)

# Full package
import math
from sklearn import * # Less recommended,
# use an alias

# Full package with alias
import pandas as pd

# Module
from sklearn import datasets

# Module with alias
import statsmodels.api as sm

# Function
from statsmodels.formula.api import ols
# For ordinary least squares regression

Assign Operators
Table A-5. Typical assign operators in Ra

Operator Direction Environment Name Comment
<- RHS to LHS Current Assignment operator

(leftwards)
Preferred; common and unambiguous

= RHS to LHS Current Assignment operator
(leftwards)

Less preferred; common but easily confused with ==
(equivalency) and = (assign to function argument); no
corollary super assignment

-> LHS to RHS Current Assignment operator
(rightwards)

Less preferred; uncommon, easily overlooked, and
unexpected. Often used at the end of a long dplyr/
tidyverse chain of functions; choose %<% instead.

a RHS stands for right-hand side and LHS stands for left-hand side.
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Table A-6. Typical assign operator in Python

Operator Direction Environment Name Comment
= RHS to LHS Current Simple assignment operator Preferred; use following environment scoping rules

Table A-7. Super assignment operators in R

Operator Direction Environment Name Comment
<<- RHS to LHS Parent Super assignment operator (leftwards) Common; use following environment

scoping rules
->> LHS to RHS Parent Super assignment operator (rightwards) Less common

These operators are particularly preferred when using a dplyr/tidyverse chain of
functions.

Table A-8. Special cases in R

Operator Direction Environment Name Comment
|> LHS to RHS Current Native forward pipe Assign to the first argument of the downstream function
%>% LHS to RHS Current Forward pipe or pipe

(colloquially)
Assign to the first argument of the downstream function,
magrittr package

%$% LHS to RHS Current Exposition pipe Expose the named elements to the downstream function,
magrittr package

%<>% RHS to LHS Current Assignment pipe Assign to the first argument of the downstream function
and assign output in situ, magrittr package

%<-% RHS to LHS Current Multiple assign Assign to multiple objects, zeallot package

Table A-9. Special cases and incrementals in Python

Operator Direction Environment Name Comment
+= RHS to LHS Current Increment

assignment
Adds a value and the variable and assigns the result to that
variable.

-= RHS to LHS Current Decrement
assignment

Subtracts a value from the variable and assigns the result to
that variable.

*= RHS to LHS Current Multiplication
assignment

Multiplies the variable by a value and assigns the result to
that variable.

/= RHS to LHS Current Division assignment Divides the variable by a value and assigns the result to that
variable.

**= RHS to LHS Current Power assignment Raises the variable to a specified power and assigns the
result to that variable.
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Operator Direction Environment Name Comment
%= RHS to LHS Current Modulus

assignment
Computes the modulus of the variable and a value and
assigns the result to that variable.

//= RHS to LHS Current Floor division
assignment

Floor divides the variable by a value and assigns the result to
that variable.

Types
Table A-10. The four most common user-defined atomic-vector types in R

Type Data frame
shorthand

Tibble
shorthand

Description Example

Logical logi <lgl> Binary data TRUE/FALSE, T/F, 1/0
Integer int <int> Whole numbers from –∞, ∞ 7, 9, 2, –4
Double num <dbl> Real numbers from –∞, ∞ 3.14, 2.78, 6.45
Character chr <chr> All alpha-numeric characters, including

white spaces
“Apple,” “Dog”

Table A-11. The four most common user-defined types in Python

Type Shorthand Description Example
Boolean bool Binary data True/False
Integer int Whole numbers from –∞, ∞ 7, 9, 2, –4
Float float Real numbers from –∞, ∞ 3.14, 2.78, 6.45
String str All alpha-numeric characters, including white spaces "Apple,” "Dog"

Arithmetic Operators
Table A-12. Common arithmetic operators

Description R Operator Python Operator
Addition + +

Subtraction – –

Multiplication * *

Division (float) / /

Exponentiation ^ or ** **

Integer Division (floor) %/% //

Modulus %% %
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Attributes
Table A-13. Class attributes

# List attributes
attributes(df)

# Accessor functions
dim(df)
names(df)
class(df)
comment(df)

# Add comment
comment(df) <- "new info"

# Add custom attribute
attr(df, "custom") <- "alt info"
attributes(df)$custom

# Definition of a class
class Food:
    name = 'toast'

# An instance of a class
breakfast = Food()

# An attribute of the class
# inherited by the instance
breakfast.name

# Setting an attribute
breakfast.name = 'museli'
# setattr(breakfast, 'name', 'museli')

Keywords
Table A-14. Reserved words and keywords

?reserved

if, else, repeat, while, function,
for, in, next, break, TRUE, FALSE,
NULL, Inf, NaN, NA, NA_integer_,
NA_real_, NA_complex_, NA_character_,
... (..1, ..2, etc.)

# py Keywords
import keyword
print(keyword.kwlist)

## ['False', 'None', 'True', 'and',
'as', 'assert', 'async', 'await',
'break', 'class', 'continue', 'def',
'del', 'elif', 'else', 'except',
'finally', 'for', 'from', 'global',
'if', 'import', 'in', 'is', 'lambda',
'nonlocal', 'not', 'or', 'pass',
'raise', 'return', 'try', 'while',
'with', 'yield']
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Functions and Methods
Table A-15. Defining named functions

# Basic definition
myFunc <- function (x, ...) {
  x * 10
}

myFunc(4)

## [1] 40

# Multiple unnamed arguments
myFunc <- function (...) {
  sum(...)
}

myFunc(100,40,60)

## [1] 200

# Simple definition
def my_func(x):
  return(x * 10)

my_func(4)

## 40

# Multiple named arguments, passed as a tuple
def my_func(*x):
  return(x[2])

my_func(100, 40, 60)

## 60

# Multiple unknown arguments, saved as a dict
def my_func(**numb):
  print("x: ",numb["x"])
  print("y: ",numb["y"])

my_func(x = 40, y = 100)

## x:  40
## y:  100

# Using doc strings
def my_func(**numb):
  """An example function
  that takes multiple unknown arguments.
  """
  print("x: ",numb["x"])
  print("y: ",numb["y"])

# Access doc strings with dunder
my_func.__doc__

'An example function
 that takes multiple unknown arguments.'
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Style and Naming Conventions
Style in R is generally more loosely defined than in Python. Nonetheless, see the
Advanced R style guide by Hadley Wickham (CRC Press) or Google’s R Style guide for
suggestions.

For Python, see the PEP 8 style guide.

Table A-16. Style and naming conventions in R and Python

Indentation and spacing Naming in a script Indentation and spacing Naming in a script
White space is generally for style
and inconsequential to execution.
Add a space around operators and
use a tab to indent on successive
lines of long commands.

The trend is currently toward
lowercase snake case:
underscores (“_”) between
words and only lowercase
letters. Example:
my_data <- 1:6

White space, in particular
indentation, is a part of
Python execution. Use four
spaces instead of a tab (this
can be set in your text editor).

Type: Functions and
variables
Style: Lowercase
snake case
Example: func,
my_func, var,
my_var, x

Table A-17. When defining classes

Type Style Example
Class Capitalized camel case Recipe, MyClass

Method Lowercase snake case class_method, method

Constant Full uppercase snake case CONS, MY_CONS, LONG_NAME_CONSTANT

Table A-18. In packages

Type Style Example
Packages and modules Lowercase snake case mypackage, module.py, my_module.py

Table A-19. Naming conventions with _

Naming Meaning

_var A convention used to show that a variable is meant for internal use within a function
or method

var_ A convention used to avoid naming conflicts with Python keywords

__var Triggers name mangling when used in a class context to prevent inheritance collisions.
Enforced by the Python interpreter

__var__ Dunder (“double underscore”) variables. Special methods defined by the Python
language. Avoid this naming scheme for your own attributes.

_ Naming a temporary or insignificant variable, e.g., in a for loop
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Analogous Data Storage Objects
Table A-20. Analogous Python objects for common R objects

 Structure  Analogous structure(s)
Vector (one-dimensional homogeneous) ndarray, but also scalars, homogeneous list and tuple

Vector, matrix or array (homogeneous) NumPy n-dimensional array (ndarray)

Unnamed list (heterogenous) list

Named list (heterogeneous) Dictionary dict, but lacking order

Environment (named, but unordered elements) Dictionary dict

Variable/column in a data.frame Pandas Series (pd.Series)

Two-dimensional data.frame Pandas data frame (pd.DataFrame)

Table A-21. Analogous R objects for common Python objects

 Structure  Analogous structure(s)
scalar One-element long vector

list (homogeneous) Vector, but as if lacking vectorization

list (heterogeneous) Unnamed list

tuple (immutable, homogeneous) Vector, list as separated output from a function

Dictionary dict, a key-value pair Named list or better environment

NumPy n-dimensional array (ndarray) Vector, matrix, or array

Pandas Series (pd.Series) Vector, variable/column in a data.frame

Pandas data frame (pd.DataFrame) Two-dimensional data.frame

Table A-22. One-dimensional, homogeneous

# Vectors
cities_R <- c("Munich", "Paris", "Amsterdam")
dist_R <- c(584, 1054, 653)

# Lists
cities = ['Munich', 'Paris', 'Amsterdam']
dist = [584, 1054, 653]
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Table A-23. One-dimensional, heterogeneous key-value pairs (Lists in R,
dictionaries in Python)

# A list of data frames
cities_list <- list(Munich = data.frame(dist = 584,
                                     pop = 1484226,
                                     area = 310.43,
                                     country = "DE"),
                 Paris = data.frame(dist = 1054,
                                  pop = 2175601,
                                  area = 105.4,
                                  country = "FR"),
                 Amsterdam = data.frame(dist = 653,
                                      pop = 1558755,
                                      area = 219.32,
                                      country = "NL"))
# As a list object
cities_list[1]

## $Munich
##   dist     pop   area country
## 1  584 1484226 310.43      DE

cities_list["Munich"]

## $Munich
##   dist     pop   area country
## 1  584 1484226 310.43      DE

# As a data.frame object
cities_list[[1]]

##   dist     pop   area country
## 1  584 1484226 310.43      DE

cities_list$Munich

##   dist     pop   area country
## 1  584 1484226 310.43      DE

# A list of heterogeneous data
lm_list <- lm(weight ~ group, data = PlantGrowth)

# length(lm_list)
# names(lm_list)

# lists
city_l = ['Munich', 'Paris', 'Amsterdam']

dist_l = [584, 1054, 653]

pop_l = [1484226, 2175601, 1558755]

area_l = [310.43, 105.4, 219.32]

country_l = ['DE', 'FR', 'NL']

import numpy as np

# NumPy arrays
city_a = np.array(['Munich', 'Paris', 'Amsterdam'])
city_a

## array(['Munich', 'Paris', 'Amsterdam'], dtype=
      '<U9')

pop_a = np.array([1484226, 2175601, 1558755])
pop_a

## array([1484226, 2175601, 1558755])

# Dictionaries
yy = {'city': ['Munich', 'Paris', 'Amsterdam'],
      'dist': [584, 1054, 653],
      'pop': [1484226, 2175601, 1558755],
      'area': [310.43, 105.4, 219.32],
      'country': ['DE', 'FR', 'NL']}
yy

## {'city': ['Munich', 'Paris', 'Amsterdam'],
## 'dist': [584, 1054, 653], 'pop': [1484226,
## 2175601, 1558755], 'area': [310.43, 105.4,
## 219.32], 'country': ['DE', 'FR', 'NL']}
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Data Frames
Table A-24. Data frames in Python

# class pd.DataFrame
import pandas as pd

# From a dictionary, yy
yy_df = pd.DataFrame(yy)
yy_df

##         city  dist      pop    area country
## 0     Munich   584  1484226  310.43      DE
## 1      Paris  1054  2175601  105.40      FR
## 2  Amsterdam   653  1558755  219.32      NL

# From lists
# names
list_names = ['city', 'dist', 'pop', 'area', 'country']

# columns are a list of lists
list_cols = [city_l, dist_l, pop_l, area_l, country_l]
list_cols
   

## [['Munich', 'Paris', 'Amsterdam'], [584, 1054, 653], [1484226...

# A zipped list of tuples

zip_list = list(zip(list_cols, list_names))
zip_list

# zip_dict = dict(zip_list)
# zip_df = pd.DataFrame(zip_dict)
# zip_df

# zip_df = pd.DataFrame(zip_list)
# zip_df
   

## [(['Munich', 'Paris', 'Amsterdam'], 'city'), ([584, 1054, 653], 'dist')...
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# Easier
# Import pandas library
import pandas as pd

# initialize list of lists
list_rows = [['Munich',   584,  1484226,  310.43, 'DE'],
             ['Paris',  1054,  2175601,  105.40,      'FR'],
             ['Amsterdam',   653,  1558755,  219.32,      'NL']]

# Create the pandas data frame
df = pd.DataFrame(list_rows, columns = list_names)

# print data frame.
df
   

##         city  dist      pop    area country
## 0     Munich   584  1484226  310.43      DE
## 1      Paris  1054  2175601  105.40      FR
## 2  Amsterdam   653  1558755  219.32      NL
    

Table A-25. Two-dimensional, heterogenous, tabular data frames in R

# class data.frame from vectors
cities_df <- data.frame(city = c("Munich", "Paris", "Amsterdam"),
                    dist = c(584, 1054, 653),
                    pop = c(1484226, 2175601, 1558755),
                    area = c(310.43, 105.4, 219.32),
                    country = c("DE", "FR", "NL"))

cities_df

##        city dist     pop   area country
## 1    Munich  584 1484226 310.43      DE
## 2     Paris 1054 2175601 105.40      FR
## 3 Amsterdam  653 1558755 219.32      NL
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Table A-26. Multidimensional arrays

# array
arr_r <- array(c(1:4,
                 seq(10, 40, 10),
                 seq(100, 400, 100)),
               dim = c(2,2,3) )

arr_r

## , , 1
##
##      [,1] [,2]
## [1,]    1    3
## [2,]    2    4
##
## , , 2
##
##      [,1] [,2]
## [1,]   10   30
## [2,]   20   40
##
## , , 3
##
##      [,1] [,2]
## [1,]  100  300
## [2,]  200  400

rowSums(arr_r, dims = 2)

##      [,1] [,2]
## [1,]  111  333
## [2,]  222  444

rowSums(arr_r, dims = 1)

## [1] 444 666

colSums(arr_r, dims = 1)

##      [,1] [,2] [,3]
## [1,]    3   30  300
## [2,]    7   70  700

colSums(arr_r, dims = 2)

## [1]   10  100 1000

arr = np.array([[[ 1,  2],
                 [ 3,  4]],
                [[ 10, 20],
                 [30, 40]],
                [[100, 200],
                 [300, 400]]])
arr

## array([[[  1,   2],
##         [  3,   4]],
##
##        [[ 10,  20],
##         [ 30,  40]],
##
##        [[100, 200],
##         [300, 400]]])

arr.sum(axis=0)

## array([[111, 222],
##        [333, 444]])

arr.sum(axis=1)

## array([[  4,   6],
##        [ 40,  60],
##        [400, 600]])

arr.sum(axis=2)

## array([[  3,   7],
##        [ 30,  70],
##        [300, 700]])
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Logical Expressions
Table A-27. Relational operators

Description R Operator Python Operator
Equivalency == ==

Non-equivalency != !=

Greater-than (or equal to) > (>=) > (>=)

Lesser-than (or equal to) < (<=) < (<=)

Negation !x not()

Table A-28. Relational operators

xx <- 1:10

xx == 6

##  [1] FALSE FALSE FALSE FALSE FALSE
TRUE FALSE FALSE FALSE FALSE

xx != 6

##  [1]  TRUE  TRUE  TRUE  TRUE  TRUE
FALSE  TRUE  TRUE  TRUE  TRUE

xx >= 6

##  [1] FALSE FALSE FALSE FALSE FALSE
TRUE  TRUE  TRUE  TRUE  TRUE

xx < 6

##  [1]  TRUE  TRUE  TRUE  TRUE  TRUE
FALSE FALSE FALSE FALSE FALSE

# Rel Op in Python
a = np.array([23, 6, 7, 9, 12])
a > 10

## array([ True, False, False, False, True])

Table A-29. Logical operators

Description R operator Python operator
AND &, && &, and

OR |, || |, or

WITHIN y %in% x in, not in

identity identical() is, is not
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Table A-30. Logical operators

xx <- 1:6

# tails of a distribution
xx < 3 | xx > 4

## [1]  TRUE  TRUE FALSE FALSE  TRUE  TRUE

# Range in a distribution
xx > 3 & xx < 4

## [1] FALSE FALSE FALSE FALSE FALSE FALSE

# Log Op in Python
# x = range(6)
# x = [*x]
# x
# type(x)
import numpy as np
x  = np.array(range(6))
# type(x)
# tails of a distribution
# x < 3 or x > 4
[i for i in x if i < 3 or i > 4]

# Range in a distribution
# x > 3 and x < 4

## [0, 1, 2, 5]

[i for i in x if i >= 3 and i <= 4]

## [3, 4]

Table A-31. Identity

x <- c("Caracas", "Bogotá", "Quito")
y <- c("Bern", "Berlin", "Brussels")
z <- c("Caracas", "Bogotá", "Quito")

# Are the objects identical?
identical(x, y)

## [1] FALSE

identical(x, z)

## [1] TRUE

# Is any TRUE
any(x == "Quito")

## [1] TRUE

# Are all TRUE
all(str_detect(y, "^B"))

## [1] TRUE

x = ['Caracas', 'Bogotá', 'Quito']
y = ['Bern', 'Berlin', 'Brussels']
z = ['Caracas', 'Bogotá', 'Quito']

x == y

## False

x == z

## True

# Is any True
import numpy as np
x = np.array(x)
np.any(x == "Caracas")

## True

# Are all True

np.all(x == "Caracas")

## False
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Indexing
Table A-32. Testing for identical objectsa

Dimensions Use Description Dimensions Use Description
1 x[index] Isolate

contents,
keep
container

1 x[index] Isolate
contents,
keep
container

1 x[-index] Extract one
content,
discard
container

1 x[-index] Isolate
contents
from
reverse
direction,
keep
container

1 x[[index]] Isolate
contents,
remove
item, keep
container

1 x[index_1:index_2] Slice

2 x[row_index, 

col_index]

Isolate
contents,
keep
container

1 x[index_1:index_2:stride] Slice with
an interval

2 x[col_index] Shortcut for
columns

1 x[index_1:index_2:-1] Slice with
reversal

2 x[[index]] Extract one
content,
discard
container

2 x.loc[index_1:index_2] Location

n x[row_index, 

col_index, 

dim_index]

Isolate
contents,
keep
container

2 x.iloc[index_1:index_2:stride] Index

a Where index, row_index, col_index, and dim_index are vectors of type integer, character, or logical
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Table A-33. One-dimensional

xx <- LETTERS[6:16]
xx[4]

## [1] "I"

xx[[4]]

## [1] "I"

cities_list[2]

## $Paris
##   dist     pop  area country
## 1 1054 2175601 105.4      FR

cities = ['Toronto', 'Santiago',
'Berlin', 'Singapore', 'Kampala', 'New Delhi']

cities[0]

## 'Toronto'

cities[-1]

## 'New Delhi'

cities[1:2]

## ['Santiago']

cities[:2]

## ['Toronto', 'Santiago']

Table A-34. Two-dimensional R

# class data.frame from vectors
cities_df <- data.frame(city = c("Munich", "Paris", "Amsterdam"),
                    dist = c(584, 1054, 653),
                    pop = c(1484226, 2175601, 1558755),
                    area = c(310.43, 105.4, 219.32),
                    country = c("DE", "FR", "NL"))

cities_df[2] # data frame

##   dist
## 1  584
## 2 1054
## 3  653

cities_df[,2]  # vector

## [1]  584 1054  653

cities_df[[2]] # vector

## [1]  584 1054  653

cities_df[2:3] # data frame

##   dist     pop
## 1  584 1484226
## 2 1054 2175601
## 3  653 1558755

cities_df[,2:3]  # data frame

##   dist     pop
## 1  584 1484226
## 2 1054 2175601
## 3  653 1558755
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cities_tbl <- tibble(city = c("Munich", "Paris", "Amsterdam"),
                    dist = c(584, 1054, 653),
                    pop = c(1484226, 2175601, 1558755),
                    area = c(310.43, 105.4, 219.32),
                    country = c("DE", "FR", "NL"))

cities_tbl[2]  # data frame

## # A tibble: 3 x 1
##    dist
##   <dbl>
## 1   584
## 2  1054
## 3   653

cities_tbl[,2]  # data frame

## # A tibble: 3 x 1
##    dist
##   <dbl>
## 1   584
## 2  1054
## 3   653

cities_tbl[[2]] # vector

## [1]  584 1054  653

cities_tbl[2:3]  # data frame

## # A tibble: 3 x 2
##    dist     pop
##   <dbl>   <dbl>
## 1   584 1484226
## 2  1054 2175601
## 3   653 1558755

cities_tbl[,2:3]  # data frame

## # A tibble: 3 x 2
##    dist     pop
##   <dbl>   <dbl>
## 1   584 1484226
## 2  1054 2175601
## 3   653 1558755
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Table A-35. Two-dimensional Python

df

##         city  dist      pop    area country
  ## 0     Munich   584  1484226  310.43      DE
  ## 1      Paris  1054  2175601  105.40      FR
  ## 2  Amsterdam   653  1558755  219.32      NL

df[1:]

##         city  dist      pop    area country
  ## 1      Paris  1054  2175601  105.40      FR
  ## 2  Amsterdam   653  1558755  219.32      NL

# position
  df.iloc[0, 1]

## 584

df.iat[0, 1]

## 584

# label
  df.loc[1:,  'city']

## 1        Paris
  ## 2    Amsterdam
  ## Name: city, dtype: object

data = {'Country': ['Belgium',  'India',  'Brazil'],
        'Capital': ['Brussels',  'New Delhi',  'Brasilia'],
        'Population': [11190846, 1303171035, 207847528]}

df_2 = pd.DataFrame(data,columns=['Country',  'Capital',  'Population'])

df_2

##    Country    Capital  Population
## 0  Belgium   Brussels    11190846
## 1    India  New Delhi  1303171035
## 2   Brazil   Brasilia   207847528

df[1:]
# df.iloc([0], [0])

##         city  dist      pop    area country
## 1      Paris  1054  2175601  105.40      FR
## 2  Amsterdam   653  1558755  219.32      NL
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Table A-36. N-dimensional

cities_array <- c(1:16)
dim(cities_array) <- c(4,2,2)
cities_array

## , , 1
##
##      [,1] [,2]
## [1,]    1    5
## [2,]    2    6
## [3,]    3    7
## [4,]    4    8
##
## , , 2
##
##      [,1] [,2]
## [1,]    9   13
## [2,]   10   14
## [3,]   11   15
## [4,]   12   16

cities_array[1,2,2]

## [1] 13

cities_array[1,2,]

## [1]  5 13

cities_array[,2,1]

## [1] 5 6 7 8

# Python n-dimensional indexing
arr

## array([[[  1,   2],
##         [  3,   4]],
##
##        [[ 10,  20],
##         [ 30,  40]],
##
##        [[100, 200],
##         [300, 400]]])

arr[1,1,1]

## 40

arr[:,1,1]

## array([  4,  40, 400])

arr[1,:,1]

## array([20, 40])

arr[1,1,:]

## array([30, 40])
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Symbols
"" (double quotation marks), 16
#%% (VS Code extension, Python), 53
$ (access components, R), 29, 126
%<-% (multiple assign operator, R), 65, 149
%>% (forward pipe operator, R), 36, 149
'' (single quotation marks), 16, 31
() (execute and print to screen, R), 23
() (tuples, Python), 64
+ (ggplot2 layers, R), 97
- (exclude elements, R), 34
. (period for accessing functions, Python), 59,

62, 126
. (period for hidden subdirectories, Python), 51
. (period in functions, R), 19, 30, 59
0 - Setup.R reticulate script, 121, 125, 141
0 as beginning for indexing, Python, 61, 65
1 - Activate.R reticulate script, 121, 125, 141
1 as beginning for indexing, R, 23, 29
2 - Passing objects.Rmd file, 125
3 - Using functions.Rmd file, 127
4 - Calling scripts.Rmd and Calling scripts.R,

127
5 - Interactive mode.R file, 128
: (sequences, R), 34
: (start:end, Python), 65
:: (access functions within packages, R), 23
< (LHS and RHS redirection, R), 118
<- (assign operator, R), 18, 148
= (alternative assign operator, R), 18
> (print to console, R), 22
[[]] (indexing, R and Python), 63
[] (indexing, R and Python), 33-36, 62, 63, 64,

160-165

_ (underscore in functions, R), 19, 59
_ (underscore in snakecase, R), 21
{} (dictionary, Python), 63, 64
~ (described by, R), 29

A
accuracy score, 143
addMarkers function, R, 99
addTiles function, R, 99
adimpro package, R, 81
Advanced R (Wickham), 21, 153
aerial image processing, 77
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